Home
Class 12
MATHS
Evaluate: inta/(b+c e^x)dx...

Evaluate: `inta/(b+c e^x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{a}{b + c e^x} \, dx, \] where \(a\), \(b\), and \(c\) are arbitrary constants, we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{a}{b + c e^x} \, dx. \] ### Step 2: Factor out \(e^x\) We can factor \(e^x\) from the denominator: \[ I = \int \frac{a e^{-x}}{b e^{-x} + c} \, dx. \] ### Step 3: Substitute Let \[ t = b e^{-x} + c. \] Now, we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = -b e^{-x}. \] Thus, we can express \(dx\) in terms of \(dt\): \[ dx = \frac{dt}{-b e^{-x}}. \] ### Step 4: Substitute \(dx\) in the Integral Now substituting \(dx\) in the integral: \[ I = \int \frac{a e^{-x}}{t} \left(-\frac{dt}{b e^{-x}}\right). \] This simplifies to: \[ I = -\frac{a}{b} \int \frac{1}{t} \, dt. \] ### Step 5: Integrate The integral of \(\frac{1}{t}\) is: \[ \int \frac{1}{t} \, dt = \ln |t| + C. \] Thus, we have: \[ I = -\frac{a}{b} \ln |t| + C. \] ### Step 6: Substitute Back for \(t\) Now we substitute back for \(t\): \[ t = b e^{-x} + c. \] So, we get: \[ I = -\frac{a}{b} \ln |b e^{-x} + c| + C. \] ### Final Result The final result of the integral is: \[ I = -\frac{a}{b} \ln |b e^{-x} + c| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : inta/(a^xb^x)dx

Evaluate: int_a^b cos x dx

Evaluate: int_a^b e^x dx using limit of sum

Evaluate: int_a^b x^3dx

Evaluate: intcos e c^4x dx

Evaluate: inta^(m x)b^(n x)dx

Evaluate: inta^(m x)b^(n x)dx

Evaluate: int(cos e c^2x)/(1+cotx)dx

Evaluate inta b x""dx

Evaluate : int_( (dx)/(e^(x)+e^(-x)) )