Home
Class 12
MATHS
int e^(x). "(cot x- cosec"^(2)" x) dx "...

`int e^(x). "(cot x- cosec"^(2)" x) dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (\cot x - \csc^2 x) \, dx \), we can break it down into two separate integrals: \[ \int e^x \cot x \, dx - \int e^x \csc^2 x \, dx \] ### Step 1: Solve \( \int e^x \cot x \, dx \) To solve \( \int e^x \cot x \, dx \), we will use integration by parts. We choose: - \( u = \cot x \) (first function) - \( dv = e^x \, dx \) (second function) Now we need to find \( du \) and \( v \): - \( du = -\csc^2 x \, dx \) - \( v = e^x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int e^x \cot x \, dx = e^x \cot x - \int e^x (-\csc^2 x) \, dx \] This simplifies to: \[ \int e^x \cot x \, dx = e^x \cot x + \int e^x \csc^2 x \, dx \] ### Step 2: Combine the integrals Now we can substitute this back into our original integral: \[ \int e^x (\cot x - \csc^2 x) \, dx = \left( e^x \cot x + \int e^x \csc^2 x \, dx \right) - \int e^x \csc^2 x \, dx \] The \( \int e^x \csc^2 x \, dx \) terms cancel out: \[ \int e^x (\cot x - \csc^2 x) \, dx = e^x \cot x + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int e^x (\cot x - \csc^2 x) \, dx = e^x \cot x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int " cosec"^(3) " x dx "

int " cosec"^(4) 2x dx

Knowledge Check

  • inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

    A
    `e^(x) cosec x +C`
    B
    `-e^(x) cosec x +C`
    C
    ` e^(x) cot x +C`
    D
    ` - e^(x) cot x +C`
  • Similar Questions

    Explore conceptually related problems

    int cot^(3) x. cosec^(2) x dx

    int_(0)^(pi//4) cot x. " cosec"^(2) x dx

    int e^(x). " cos"^(2) " x dx"

    Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

    int1/(sec x + cosec x) dx

    int1/(sec x + cosec x) dx

    int (dx)/(sec x + "cosec x")