Home
Class 12
MATHS
Evaluate : int x^n log x dx....

Evaluate : `int x^n log x dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int x^n \log x \, dx \), we will use the integration by parts formula. The integration by parts formula states: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log x \) (which means \( du = \frac{1}{x} \, dx \)) - \( dv = x^n \, dx \) (which means \( v = \frac{x^{n+1}}{n+1} \)) ### Step 2: Apply the integration by parts formula Using the integration by parts formula, we have: \[ I = \int x^n \log x \, dx = uv - \int v \, du \] Substituting our choices for \( u \), \( du \), \( v \), and \( dv \): \[ I = \log x \cdot \frac{x^{n+1}}{n+1} - \int \frac{x^{n+1}}{n+1} \cdot \frac{1}{x} \, dx \] ### Step 3: Simplify the integral The integral simplifies to: \[ I = \frac{x^{n+1} \log x}{n+1} - \frac{1}{n+1} \int x^n \, dx \] ### Step 4: Evaluate the remaining integral Now, we need to evaluate \( \int x^n \, dx \): \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] ### Step 5: Substitute back into the equation Substituting this back into our expression for \( I \): \[ I = \frac{x^{n+1} \log x}{n+1} - \frac{1}{n+1} \left( \frac{x^{n+1}}{n+1} + C \right) \] ### Step 6: Final simplification Now, we can combine the terms: \[ I = \frac{x^{n+1} \log x}{n+1} - \frac{x^{n+1}}{(n+1)^2} - \frac{C}{n+1} \] Thus, we can write the final answer as: \[ I = \frac{x^{n+1} \log x}{n+1} - \frac{x^{n+1}}{(n+1)^2} + C \] ### Final Answer \[ \int x^n \log x \, dx = \frac{x^{n+1} \log x}{n+1} - \frac{x^{n+1}}{(n+1)^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int x log x dx .

Evaluate int 5^(log _(e)x)dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx

Evaluate : int(x^(2) +1)"log x dx"

Evaluate: int(log)_(10)x\ dx

Evaluate: int_3^10[log[x]]dx

Evaluate : int ("cos (log x)")/(x) " dx "

Evaluate int 2^(log_(4)x)dx

Evaluate int (sin(log x))/(x)dx