Home
Class 12
MATHS
int x. a^(x) dx...

`int x. a^(x) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x a^x \, dx \), we will use the integration by parts formula. The integration by parts formula states that: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Identify \( u \) and \( dv \) Let: - \( u = x \) (First function) - \( dv = a^x \, dx \) (Second function) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = dx \) - To find \( v \), we integrate \( dv \): \[ v = \int a^x \, dx = \frac{a^x}{\ln a} \] ### Step 3: Apply the integration by parts formula Now we can apply the integration by parts formula: \[ \int x a^x \, dx = uv - \int v \, du \] Substituting the values we found: \[ \int x a^x \, dx = x \cdot \frac{a^x}{\ln a} - \int \frac{a^x}{\ln a} \, dx \] ### Step 4: Simplify the integral Now we need to evaluate the integral \( \int \frac{a^x}{\ln a} \, dx \): \[ \int \frac{a^x}{\ln a} \, dx = \frac{1}{\ln a} \int a^x \, dx = \frac{1}{\ln a} \cdot \frac{a^x}{\ln a} = \frac{a^x}{(\ln a)^2} \] ### Step 5: Substitute back into the equation Now we substitute this back into our equation: \[ \int x a^x \, dx = x \cdot \frac{a^x}{\ln a} - \frac{1}{\ln a} \cdot \frac{a^x}{(\ln a)^2} \] ### Step 6: Combine the terms Combining the terms gives us: \[ \int x a^x \, dx = \frac{x a^x}{\ln a} - \frac{a^x}{(\ln a)^2} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int x a^x \, dx = \frac{a^x}{\ln a} \left( x - \frac{1}{\ln a} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int x.e^(2x)dx

int e^x(3+x) dx

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

int x.sin x dx

int x sqrt(x)dx=

int x^(2)e^(x)dx

If a >0 and a!=1 evaluate the following integrals: inte^x\ a^x\ dx (ii) int2^((log)_e x)\ dx

int x^(3)cos x*dx

int x^(2)e^(-x)dx

Evaluate int x log x dx .