Home
Class 12
MATHS
int " x sec"^(2) " x dx "...

`int " x sec"^(2) " x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \sec^2 x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step-by-Step Solution: 1. **Choose \( u \) and \( dv \)**: - Let \( u = x \) (which we will differentiate) - Let \( dv = \sec^2 x \, dx \) (which we will integrate) 2. **Differentiate \( u \) and Integrate \( dv \)**: - Differentiate \( u \): \[ du = dx \] - Integrate \( dv \): \[ v = \int \sec^2 x \, dx = \tan x \] 3. **Apply the Integration by Parts Formula**: - Substitute \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx \] 4. **Integrate \( \tan x \)**: - Recall that \( \int \tan x \, dx = -\ln |\cos x| + C \) (or \( \ln |\sec x| + C \)). - Therefore, we have: \[ \int x \sec^2 x \, dx = x \tan x - (-\ln |\cos x|) + C \] - Simplifying gives: \[ \int x \sec^2 x \, dx = x \tan x + \ln |\cos x| + C \] ### Final Answer: \[ \int x \sec^2 x \, dx = x \tan x + \ln |\cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int " x sec"^(2) " 2x dx "" "(ii) int " x sin"^(3) " x dx "

Evaluate : int " sec"^(2) " 3x dx "

int " log sin x . sec"^(2) " x dx "

Evaluate the following integrals. int tanx sec^(6) x dx

int sec^(-1)x dx

Evaluate int tan ^(2) x sec^(4) x dx

int " sec (tan"^(_1)" x ) dx "

int x sinx sec^(3)x dx is equal to

int e^x sec e^x dx

int sec x tan x sqrt(sec^(2) x+1)dx