Home
Class 12
MATHS
Evaluate: intxlog(1+x)\ dx...

Evaluate: `intxlog(1+x)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x \log(1+x) \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log(1+x) \) (which we will differentiate) - \( dv = x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+x} \, dx \] - Integrate \( dv \): \[ v = \frac{x^2}{2} \] ### Step 3: Apply the integration by parts formula Substituting into the integration by parts formula: \[ \int x \log(1+x) \, dx = \left( \log(1+x) \cdot \frac{x^2}{2} \right) - \int \left( \frac{x^2}{2} \cdot \frac{1}{1+x} \right) \, dx \] ### Step 4: Simplify the integral Now we need to simplify the integral: \[ \int \frac{x^2}{2(1+x)} \, dx = \frac{1}{2} \int \frac{x^2}{1+x} \, dx \] We can simplify \( \frac{x^2}{1+x} \) by performing polynomial long division: \[ \frac{x^2}{1+x} = x - 1 + \frac{1}{1+x} \] Thus, we have: \[ \int \frac{x^2}{1+x} \, dx = \int (x - 1 + \frac{1}{1+x}) \, dx \] ### Step 5: Integrate each term Now we can integrate each term: 1. \( \int x \, dx = \frac{x^2}{2} \) 2. \( \int -1 \, dx = -x \) 3. \( \int \frac{1}{1+x} \, dx = \log(1+x) \) Putting it all together: \[ \int \frac{x^2}{1+x} \, dx = \frac{x^2}{2} - x + \log(1+x) \] ### Step 6: Substitute back into the equation Now substituting back into our integration by parts result: \[ \int x \log(1+x) \, dx = \frac{x^2}{2} \log(1+x) - \frac{1}{2} \left( \frac{x^2}{2} - x + \log(1+x) \right) \] ### Step 7: Simplify the expression This simplifies to: \[ = \frac{x^2}{2} \log(1+x) - \frac{1}{4} x^2 + \frac{1}{2} x - \frac{1}{2} \log(1+x) + C \] Where \( C \) is the constant of integration. ### Final Result Thus, the final result is: \[ \int x \log(1+x) \, dx = \frac{x^2}{2} \log(1+x) - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2} \log(1+x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intlog(x+1)\ dx

intxlog(1+1/x)dx

Evaluate: intxlog2xdx

Evaluate: intxcot^(-1)x\ dx

Evaluate: int(x+1)\ dx

Evaluate: int(x+1+e^x)\ dx

Evaluate: int((1+x)/x)\ dx

Evaluate: int((1-x)/x)\ dx

Evaluate: (i) int(logx)/x\ dx (ii) int(log(1+1/x))/(x(1+x))\ dx

Evaluate: int(log(1+1/x))/(x(1+x))dx