Home
Class 12
MATHS
Evaluate: (i) intsecxlog(secx+tanx)\ dx ...

Evaluate: (i) `intsecxlog(secx+tanx)\ dx` (ii) `intcos e c\ xlog(cos e c\ x-cotx)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): Evaluate \(\int \sec x \log(\sec x + \tan x) \, dx\) **Step 1: Substitution** Let \( t = \log(\sec x + \tan x) \). **Hint:** When dealing with logarithmic integrals, substitution can simplify the expression. **Step 2: Differentiate \( t \)** Differentiating both sides gives: \[ dt = \frac{1}{\sec x + \tan x} \left( \sec x \tan x + \sec^2 x \right) dx \] This simplifies to: \[ dt = \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} dx \] **Hint:** Remember the derivatives of \(\sec x\) and \(\tan x\) for differentiation. **Step 3: Rearranging** We can express \( dx \) in terms of \( dt \): \[ dx = \frac{(\sec x + \tan x)}{\sec x (\tan x + \sec x)} dt \] **Step 4: Substitute back into the integral** Now we can rewrite the integral: \[ \int \sec x \log(\sec x + \tan x) \, dx = \int t \, dt \] **Hint:** Look for patterns in the integral that allow for simplification. **Step 5: Integrate** Using the formula for the integral of \( t \): \[ \int t \, dt = \frac{t^2}{2} + C \] **Step 6: Substitute back for \( t \)** Now substituting back for \( t \): \[ \frac{(\log(\sec x + \tan x))^2}{2} + C \] ### Final Answer for Part (i): \[ \int \sec x \log(\sec x + \tan x) \, dx = \frac{(\log(\sec x + \tan x))^2}{2} + C \] --- ### Part (ii): Evaluate \(\int \csc x \log(\csc x - \cot x) \, dx\) **Step 1: Substitution** Let \( t = \log(\csc x - \cot x) \). **Hint:** Similar to the first part, a logarithmic substitution can simplify the integral. **Step 2: Differentiate \( t \)** Differentiating gives: \[ dt = \frac{1}{\csc x - \cot x} \left( -\csc x \cot x + \csc^2 x \right) dx \] This simplifies to: \[ dt = \frac{\csc^2 x - \csc x \cot x}{\csc x - \cot x} dx \] **Hint:** Keep track of the signs when differentiating. **Step 3: Rearranging** Rearranging gives: \[ dx = \frac{(\csc x - \cot x)}{(\csc^2 x - \csc x \cot x)} dt \] **Step 4: Substitute back into the integral** Now we can write: \[ \int \csc x \log(\csc x - \cot x) \, dx = \int t \, dt \] **Hint:** Recognize that the structure of the integral remains consistent. **Step 5: Integrate** Using the formula for the integral of \( t \): \[ \int t \, dt = \frac{t^2}{2} + C \] **Step 6: Substitute back for \( t \)** Substituting back for \( t \): \[ \frac{(\log(\csc x - \cot x))^2}{2} + C \] ### Final Answer for Part (ii): \[ \int \csc x \log(\csc x - \cot x) \, dx = \frac{(\log(\csc x - \cot x))^2}{2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int(tanx)/(secx+tanx)\ dx (ii) int(cos e c\ x)/(cos e c\ x-cotx)\ dx

Evaluate: int(secx)/(log(secx+tanx)dx

Evaluate: (i) int(secx)/(log(secx+tanx)\ dx (ii) int(cos e c\ x)/(logtanx/2)\ dx

Evaluate: inte^x\ [(secx+log(secx+tanx)]\ dx

Evaluate: (i) intcot^2x cos e c^4x\ \ dx (ii) intcos e c^4x\ dx

Evaluate: intsecx\ (secx+tanx)dx

Evaluate: (i) intsec^4 2x\ dx (ii) intcos e c^4\ 3x\ dx

Evaluate: int1/(secx+cos e c\ x)\ dx

Evaluate: (i) int1/(xlogxlog(logx)\ dx (ii) int(cos e c^2x)/(1+cotx)\ dx

Evaluate: (i) int(secx\ cos e c\ x)/(log(tanx)\ dx (ii) int1/(x\ (3+logx)\ dx