Home
Class 12
MATHS
intsinsqrt(x) dx...

`intsinsqrt(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sin(\sqrt{x}) \, dx\), we can follow these steps: ### Step 1: Substitution Let \( T = \sqrt{x} \). Then, we differentiate both sides: \[ \frac{dT}{dx} = \frac{1}{2\sqrt{x}} \implies dx = 2T \, dT \] ### Step 2: Rewrite the Integral Substituting \( T \) and \( dx \) into the integral gives: \[ \int \sin(\sqrt{x}) \, dx = \int \sin(T) \cdot 2T \, dT = 2 \int T \sin(T) \, dT \] ### Step 3: Integration by Parts Now we will use integration by parts. We let: - \( u = T \) (first part) - \( dv = \sin(T) \, dT \) (second part) Then, we differentiate and integrate: - \( du = dT \) - \( v = -\cos(T) \) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we have: \[ 2 \int T \sin(T) \, dT = 2 \left( -T \cos(T) - \int -\cos(T) \, dT \right) \] ### Step 4: Simplifying the Integral Now we simplify: \[ = 2 \left( -T \cos(T) + \int \cos(T) \, dT \right) \] The integral of \(\cos(T)\) is \(\sin(T)\): \[ = 2 \left( -T \cos(T) + \sin(T) \right) \] ### Step 5: Substitute Back Now we substitute back \( T = \sqrt{x} \): \[ = 2 \left( -\sqrt{x} \cos(\sqrt{x}) + \sin(\sqrt{x}) \right) + C \] ### Final Answer Thus, the final answer is: \[ \int \sin(\sqrt{x}) \, dx = -2\sqrt{x} \cos(\sqrt{x}) + 2\sin(\sqrt{x}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int x sqrt(x)dx=

Evaluate: (i) int1/(x\ sqrt(x^4-1))\ dx (ii) intsqrt(e^x-1)\ dx

intsqrt(x/(1+x))dx

Evaluate intsqrt((a-x)/x)dx

int x/(a+x) dx

int(4-x)/x .dx

int x/(x+a)dx

intsqrt((a+x)/(a-x)) dx

intsqrt((a+x)/(x-a))dx

Evaluate: (i) intsin^2x\ dx (ii) intcos^2x\ dx (iii) intsin^2xcos^2x dx