Home
Class 12
MATHS
(i) int x^(2) " cos x dx " " "(ii) i...

`(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \(\int x^2 \cos x \, dx\) 1. **Apply Integration by Parts**: We use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \(u = x^2\) (thus \(du = 2x \, dx\)) - \(dv = \cos x \, dx\) (thus \(v = \sin x\)) 2. **Substituting into the Formula**: \[ \int x^2 \cos x \, dx = x^2 \sin x - \int \sin x \cdot 2x \, dx \] 3. **Simplify the Integral**: \[ = x^2 \sin x - 2 \int x \sin x \, dx \] 4. **Apply Integration by Parts Again**: For \(\int x \sin x \, dx\), let: - \(u = x\) (thus \(du = dx\)) - \(dv = \sin x \, dx\) (thus \(v = -\cos x\)) 5. **Substituting into the Formula**: \[ \int x \sin x \, dx = -x \cos x - \int -\cos x \, dx = -x \cos x + \sin x \] 6. **Substituting Back**: \[ \int x^2 \cos x \, dx = x^2 \sin x - 2(-x \cos x + \sin x) \] \[ = x^2 \sin x + 2x \cos x - 2\sin x + C \] ### Final Answer for Part (i): \[ \int x^2 \cos x \, dx = x^2 \sin x + 2x \cos x - 2\sin x + C \] --- ### Part (ii): \(\int x^2 e^{3x} \, dx\) 1. **Apply Integration by Parts**: Again, we use the integration by parts formula: Let: - \(u = x^2\) (thus \(du = 2x \, dx\)) - \(dv = e^{3x} \, dx\) (thus \(v = \frac{1}{3} e^{3x}\)) 2. **Substituting into the Formula**: \[ \int x^2 e^{3x} \, dx = x^2 \cdot \frac{1}{3} e^{3x} - \int \frac{1}{3} e^{3x} \cdot 2x \, dx \] \[ = \frac{1}{3} x^2 e^{3x} - \frac{2}{3} \int x e^{3x} \, dx \] 3. **Apply Integration by Parts Again**: For \(\int x e^{3x} \, dx\), let: - \(u = x\) (thus \(du = dx\)) - \(dv = e^{3x} \, dx\) (thus \(v = \frac{1}{3} e^{3x}\)) 4. **Substituting into the Formula**: \[ \int x e^{3x} \, dx = x \cdot \frac{1}{3} e^{3x} - \int \frac{1}{3} e^{3x} \, dx \] \[ = \frac{1}{3} x e^{3x} - \frac{1}{9} e^{3x} \] 5. **Substituting Back**: \[ \int x^2 e^{3x} \, dx = \frac{1}{3} x^2 e^{3x} - \frac{2}{3} \left( \frac{1}{3} x e^{3x} - \frac{1}{9} e^{3x} \right) \] \[ = \frac{1}{3} x^2 e^{3x} - \frac{2}{9} x e^{3x} + \frac{2}{27} e^{3x} + C \] ### Final Answer for Part (ii): \[ \int x^2 e^{3x} \, dx = \frac{1}{3} x^2 e^{3x} - \frac{2}{9} x e^{3x} + \frac{2}{27} e^{3x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(3x) " cos 2x dx "

(i) int " x sec"^(2) " 2x dx "" "(ii) int " x sin"^(3) " x dx "

int (3x^2+e^x) dx

int e^(x). " cos"^(2) " x dx"

(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx

(i) int_(0)^(pi//2) x cos x dx (i) int_(1)^(3) x. log x dx

(i)intsec^(7) x. sin x dx" "(ii) int(1)/(sinx. cos^(2) x)dx

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx