Home
Class 12
MATHS
(i) int " x sec"^(2) " 2x dx "" "(i...

`(i) int " x sec"^(2) " 2x dx "" "(ii) int " x sin"^(3) " x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \(\int x \sec^2(2x) \, dx\) 1. **Identify the parts for integration by parts**: We will use integration by parts, where we let: - \( u = x \) (first part) - \( dv = \sec^2(2x) \, dx \) (second part) 2. **Differentiate and integrate**: - Differentiate \( u \): \[ du = dx \] - Integrate \( dv \): \[ v = \int \sec^2(2x) \, dx = \frac{1}{2} \tan(2x) \] 3. **Apply the integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Substituting the values we found: \[ \int x \sec^2(2x) \, dx = x \cdot \frac{1}{2} \tan(2x) - \int \frac{1}{2} \tan(2x) \, dx \] 4. **Integrate \(\tan(2x)\)**: The integral of \(\tan(2x)\) is: \[ \int \tan(2x) \, dx = -\frac{1}{2} \log|\cos(2x)| + C \] Thus, \[ \int \tan(2x) \, dx = -\frac{1}{2} \log|\cos(2x)| + C \] 5. **Combine everything**: Now substituting back: \[ \int x \sec^2(2x) \, dx = \frac{1}{2} x \tan(2x) + \frac{1}{4} \log|\cos(2x)| + C \] ### Final Answer for Part (i): \[ \int x \sec^2(2x) \, dx = \frac{1}{2} x \tan(2x) - \frac{1}{4} \log|\cos(2x)| + C \] --- ### Part (ii): \(\int x \sin^3(x) \, dx\) 1. **Rewrite \(\sin^3(x)\)**: We can use the identity: \[ \sin^3(x) = \frac{3 \sin(x) - \sin(3x)}{4} \] Thus, we rewrite the integral: \[ \int x \sin^3(x) \, dx = \frac{1}{4} \int x (3 \sin(x) - \sin(3x)) \, dx \] 2. **Distribute the integral**: \[ = \frac{3}{4} \int x \sin(x) \, dx - \frac{1}{4} \int x \sin(3x) \, dx \] 3. **Apply integration by parts for \(\int x \sin(x) \, dx\)**: Let: - \( u = x \), \( dv = \sin(x) \, dx \) - Then, \( du = dx \), \( v = -\cos(x) \) \[ \int x \sin(x) \, dx = -x \cos(x) + \int \cos(x) \, dx = -x \cos(x) + \sin(x) \] 4. **Apply integration by parts for \(\int x \sin(3x) \, dx\)**: Let: - \( u = x \), \( dv = \sin(3x) \, dx \) - Then, \( du = dx \), \( v = -\frac{1}{3} \cos(3x) \) \[ \int x \sin(3x) \, dx = -\frac{1}{3} x \cos(3x) + \frac{1}{3} \int \cos(3x) \, dx = -\frac{1}{3} x \cos(3x) + \frac{1}{9} \sin(3x) \] 5. **Combine everything**: Putting it all together: \[ \int x \sin^3(x) \, dx = \frac{3}{4} \left(-x \cos(x) + \sin(x)\right) - \frac{1}{4} \left(-\frac{1}{3} x \cos(3x) + \frac{1}{9} \sin(3x)\right) \] ### Final Answer for Part (ii): \[ \int x \sin^3(x) \, dx = -\frac{3}{4} x \cos(x) + \frac{3}{4} \sin(x) + \frac{1}{12} x \cos(3x) - \frac{1}{36} \sin(3x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int " x sec"^(2) " x dx "

int " x sec"^(2) " x dx "

int " log sin x . sec"^(2) " x dx "

Evaluate : int " sec"^(2) " 3x dx "

int x sin^2(x/2) dx

(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "

(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx

int x^3 (sec^2x-tan^2x)dx

int sin x .sin2x.sin3x dx

(i)intsec^(7) x. sin x dx" "(ii) int(1)/(sinx. cos^(2) x)dx