Home
Class 12
MATHS
int\ cot^(-1)x\ dx...

`int\ cot^(-1)x\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cot^{-1}(x) \, dx \), we will use integration by parts. Here’s the step-by-step solution: ### Step 1: Identify \( u \) and \( dv \) We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \cot^{-1}(x) \) (inverse function) - \( dv = dx \) (algebraic function) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = -\frac{1}{1 + x^2} \, dx \] - Integrate \( dv \): \[ v = x \] ### Step 3: Apply the Integration by Parts Formula Substituting \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int \cot^{-1}(x) \, dx = x \cot^{-1}(x) - \int x \left(-\frac{1}{1 + x^2}\right) \, dx \] This simplifies to: \[ \int \cot^{-1}(x) \, dx = x \cot^{-1}(x) + \int \frac{x}{1 + x^2} \, dx \] ### Step 4: Solve the Remaining Integral Now we need to solve the integral \( \int \frac{x}{1 + x^2} \, dx \). We can use substitution: Let \( t = 1 + x^2 \), then \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). Thus, we can rewrite the integral: \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{t} \, dt \] This integral evaluates to: \[ \frac{1}{2} \ln |t| + C = \frac{1}{2} \ln(1 + x^2) + C \] ### Step 5: Combine All Parts Now, substitute back into our expression: \[ \int \cot^{-1}(x) \, dx = x \cot^{-1}(x) + \frac{1}{2} \ln(1 + x^2) + C \] ### Final Answer Thus, the final result is: \[ \int \cot^{-1}(x) \, dx = x \cot^{-1}(x) + \frac{1}{2} \ln(1 + x^2) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int\cot^2x\dx

The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^(2))dx , is

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

(i) int(sec x* cosec x)/(log cot x) dx (ii) int tan^(4) x\ dx

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=

Let J=int _(-1) ^(2) (cot ^(-1) ""(1)/(x )+ cot ^(-1) x ) dx, K =int _(-2pi) ^(7pi) (sin x)/(|sin x|)dx. Then which of the following alternative (s) is/are correct ?

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

int cot^2 x dx

int cot^3 x dx