Home
Class 12
MATHS
int x^3 e^(x^2) dx is equal to...

`int x^3 e^(x^2) dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 e^{x^2} \, dx \), we will use substitution and integration by parts. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ \int x^3 e^{x^2} \, dx \] We can factor out a \( \frac{1}{2} \) to make the substitution easier: \[ = \frac{1}{2} \int 2x^3 e^{x^2} \, dx \] ### Step 2: Substitution Let \( t = x^2 \). Then, differentiating both sides gives us: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Since \( x = \sqrt{t} \), we can express \( dx \) in terms of \( t \): \[ dx = \frac{dt}{2\sqrt{t}} \] Now, substituting \( x^3 = (x^2)^{3/2} = t^{3/2} \) and \( 2x \, dx = dt \): \[ \int x^3 e^{x^2} \, dx = \frac{1}{2} \int t^{3/2} e^t \cdot \frac{dt}{2\sqrt{t}} = \frac{1}{4} \int t e^t \, dt \] ### Step 3: Integration by Parts Now we will use integration by parts on \( \int t e^t \, dt \). Let: - \( u = t \) → \( du = dt \) - \( dv = e^t dt \) → \( v = e^t \) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int t e^t \, dt = t e^t - \int e^t \, dt = t e^t - e^t + C \] ### Step 4: Substitute Back Now substituting back into our integral: \[ \int x^3 e^{x^2} \, dx = \frac{1}{4} \left( t e^t - e^t \right) + C \] Replacing \( t \) back with \( x^2 \): \[ = \frac{1}{4} \left( x^2 e^{x^2} - e^{x^2} \right) + C \] Thus, the final answer is: \[ = \frac{1}{4} e^{x^2} (x^2 - 1) + C \] ### Final Answer \[ \int x^3 e^{x^2} \, dx = \frac{1}{4} e^{x^2} (x^2 - 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int 3x^2 e^(x^3) dx

int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

int(x+1)^(2)e^(x)dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

The value of int(x-1)e^(-x) dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int sqrt(e^(x)-1)dx is equal to