Home
Class 12
MATHS
Evaluate: intcos^(-1)((1-x^2)/(1+x^2))\ ...

Evaluate: `intcos^(-1)((1-x^2)/(1+x^2))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( x = \tan \theta \). Then, the differential \( dx \) becomes: \[ dx = \sec^2 \theta \, d\theta \] ### Step 2: Rewrite the Integral Substituting \( x = \tan \theta \) into the integral, we have: \[ I = \int \cos^{-1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) \sec^2 \theta \, d\theta \] Using the identity \( \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \), we can rewrite the integral as: \[ I = \int \cos^{-1}(\cos 2\theta) \sec^2 \theta \, d\theta \] ### Step 3: Simplifying the Integral Since \( \cos^{-1}(\cos 2\theta) = 2\theta \) (for \( 0 \leq 2\theta \leq \pi \)), we can simplify the integral: \[ I = \int 2\theta \sec^2 \theta \, d\theta \] ### Step 4: Integration by Parts Using integration by parts, let: - \( u = 2\theta \) \(\Rightarrow du = 2 \, d\theta\) - \( dv = \sec^2 \theta \, d\theta \) \(\Rightarrow v = \tan \theta\) Now applying the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = 2\theta \tan \theta - \int \tan \theta (2) \, d\theta \] \[ I = 2\theta \tan \theta - 2 \int \tan \theta \, d\theta \] ### Step 5: Integrating \( \tan \theta \) The integral of \( \tan \theta \) is: \[ \int \tan \theta \, d\theta = -\log |\cos \theta| + C \] Thus: \[ I = 2\theta \tan \theta + 2\log |\cos \theta| + C \] ### Step 6: Back Substitution Now we need to substitute back \( \theta \) in terms of \( x \): - From \( x = \tan \theta \), we have \( \theta = \tan^{-1}(x) \). - Also, \( \tan \theta = x \) and \( \cos \theta = \frac{1}{\sqrt{1+x^2}} \). Substituting these back into our expression for \( I \): \[ I = 2 \tan^{-1}(x) \cdot x + 2 \log \left( \frac{1}{\sqrt{1+x^2}} \right) + C \] \[ I = 2x \tan^{-1}(x) - \log(1+x^2) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \, dx = 2x \tan^{-1}(x) - \log(1+x^2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intcos^(- 1)(1-2x^2)dx

Evaluate: intcos^(-1)(sinx)\ dx

intcos^-1(1/x)dx

intcos^-1((1-tan^2x)/(1+tan^2x))dx

Evaluate: intcos^2x\ dx

Evaluate: intcos^4x\ dx

Evaluate: int(2x-1)/((x-1)^2)dx

Evaluate: intcos{2cot^(-1)sqrt((1+x)/(1-x))} dx

Evaluate: intcos{2cot^(-1)sqrt((1+x)/(1-x))} dx

Evaluate: intcos(x) +x^7\ dx