Home
Class 12
MATHS
inttan^(- 1)((3x-x^3)/(1-3x^2)) dx...

`inttan^(- 1)((3x-x^3)/(1-3x^2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \tan^{-1} \left( \frac{3x - x^3}{1 - 3x^2} \right) dx \), we can utilize a trigonometric identity. ### Step-by-step Solution: 1. **Recognize the Identity**: We know that: \[ \tan^{-1}(3x - x^3) = 3 \tan^{-1}(x) \] Therefore, we can rewrite the integral as: \[ I = \int 3 \tan^{-1}(x) \, dx \] 2. **Factor Out the Constant**: We can factor out the constant 3 from the integral: \[ I = 3 \int \tan^{-1}(x) \, dx \] 3. **Integration by Parts**: We will use integration by parts, where we let: - \( u = \tan^{-1}(x) \) (hence \( du = \frac{1}{1+x^2} \, dx \)) - \( dv = dx \) (hence \( v = x \)) The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Applying this, we have: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int x \cdot \frac{1}{1+x^2} \, dx \] 4. **Simplify the Remaining Integral**: The remaining integral can be simplified: \[ \int x \cdot \frac{1}{1+x^2} \, dx = \int \frac{x}{1+x^2} \, dx \] We can use the substitution \( t = 1 + x^2 \) (thus \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \)): \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{t} \, dt = \frac{1}{2} \ln |t| + C = \frac{1}{2} \ln(1+x^2) + C \] 5. **Combine the Results**: Now substituting back into our integration by parts result: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] Therefore, \[ I = 3 \left( x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) \right) + C \] Simplifying gives: \[ I = 3x \tan^{-1}(x) - \frac{3}{2} \ln(1+x^2) + C \] ### Final Answer: Thus, the integral \( \int \tan^{-1} \left( \frac{3x - x^3}{1 - 3x^2} \right) dx \) is: \[ I = 3x \tan^{-1}(x) - \frac{3}{2} \ln(1+x^2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^(1//sqrt(3))tan^(-1)((3x-x^3)/(1-3x^2))dx

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if x >1/(sqrt(3))

If -1/(sqrt(3)) < x < 1/(sqrt(3)) , differentiate tan^(-1)((3x-x^3)/(1-3x^2)) with respect to tan^(-1)((2x)/(1-x^2)) .

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

Evaluate: inttan^(-1)sqrt((1-x)/(1+x))dx

Evaluate: inttan^(-1)sqrt((1-x)/(1+x))dx

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))