Home
Class 12
MATHS
Evaluate int (xtan^(-1)x)/(1+x^2)^(3/2) ...

Evaluate `int (xtan^(-1)x)/(1+x^2)^(3/2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x \tan^{-1} x}{(1 + x^2)^{3/2}} \, dx, \] we will use the substitution \( t = \tan^{-1} x \). ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we have: \[ x = \tan t. \] ### Step 2: Differentiate Differentiating both sides with respect to \( x \): \[ \frac{dx}{dt} = \sec^2 t \implies dx = \sec^2 t \, dt. \] ### Step 3: Substitute in the Integral Now, substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int \frac{\tan t \cdot t}{(1 + \tan^2 t)^{3/2}} \cdot \sec^2 t \, dt. \] Using the identity \( 1 + \tan^2 t = \sec^2 t \), we can simplify: \[ I = \int \frac{\tan t \cdot t}{(\sec^2 t)^{3/2}} \cdot \sec^2 t \, dt = \int \frac{\tan t \cdot t}{\sec^3 t} \cdot \sec^2 t \, dt = \int t \cdot \frac{\tan t}{\sec t} \, dt. \] ### Step 4: Simplify Further Since \( \frac{\tan t}{\sec t} = \sin t \), we rewrite the integral: \[ I = \int t \sin t \, dt. \] ### Step 5: Integration by Parts Now we will use integration by parts. Let: - \( u = t \) \(\Rightarrow du = dt\) - \( dv = \sin t \, dt \) \(\Rightarrow v = -\cos t\) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = -t \cos t - \int -\cos t \, dt = -t \cos t + \int \cos t \, dt. \] ### Step 6: Integrate The integral of \( \cos t \) is: \[ \int \cos t \, dt = \sin t. \] Thus, we have: \[ I = -t \cos t + \sin t + C, \] where \( C \) is the constant of integration. ### Step 7: Back Substitute Now we substitute back \( t = \tan^{-1} x \): \[ I = -\tan^{-1} x \cdot \cos(\tan^{-1} x) + \sin(\tan^{-1} x) + C. \] ### Step 8: Find \( \sin(\tan^{-1} x) \) and \( \cos(\tan^{-1} x) \) Using the right triangle definitions: - \( \sin(\tan^{-1} x) = \frac{x}{\sqrt{1 + x^2}} \) - \( \cos(\tan^{-1} x) = \frac{1}{\sqrt{1 + x^2}} \) Substituting these into our expression gives: \[ I = -\tan^{-1} x \cdot \frac{1}{\sqrt{1 + x^2}} + \frac{x}{\sqrt{1 + x^2}} + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = \frac{x - \tan^{-1} x}{\sqrt{1 + x^2}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(xtan^(-1)x^2)/1dx

Evaluate: int((xtan^(-1)x)/((1+x^2)^(3setminus2))\) dx

int \ (2xtan^(- 1)x^2)/(1+x^4)dx

Evaluate inte^-xtan^-1(e^x)dx

Evaluate : int(3x^2+1)dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate inte^(x)((1-x)/(1+x^(2)))^(2)dx .

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate int (3x-1)/((x-2)^(2))dx