Home
Class 12
MATHS
int " sec (tan"^(1)" x ) dx "...

`int " sec (tan"^(_1)" x ) dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sec(\tan^{-1} x) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we have: \[ x = \tan t \quad \text{and} \quad dx = \sec^2 t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we get: \[ I = \int \sec(t) \sec^2(t) \, dt \] This simplifies to: \[ I = \int \sec^3(t) \, dt \] ### Step 3: Use the Identity We know that: \[ \sec^3(t) = \sec(t) \cdot \sec^2(t) \] Using the identity \( \sec^2(t) = 1 + \tan^2(t) \), we can express: \[ I = \int \sec(t)(1 + \tan^2(t)) \, dt \] This can be split into two integrals: \[ I = \int \sec(t) \, dt + \int \sec(t) \tan^2(t) \, dt \] ### Step 4: Solve Each Integral 1. The integral \( \int \sec(t) \, dt \) is known to be: \[ \int \sec(t) \, dt = \ln | \sec(t) + \tan(t) | + C_1 \] 2. For the integral \( \int \sec(t) \tan^2(t) \, dt \), we can use the identity \( \tan^2(t) = \sec^2(t) - 1 \): \[ \int \sec(t) \tan^2(t) \, dt = \int \sec(t)(\sec^2(t) - 1) \, dt = \int \sec^3(t) \, dt - \int \sec(t) \, dt \] ### Step 5: Combine Results Thus, we can express \( I \) as: \[ I = \ln | \sec(t) + \tan(t) | + C_1 + (I - \int \sec(t) \, dt) \] This leads us to: \[ 2I = \ln | \sec(t) + \tan(t) | + C_1 \] So, \[ I = \frac{1}{2} \ln | \sec(t) + \tan(t) | + \frac{C_1}{2} \] ### Step 6: Back Substitute Now, substituting back \( t = \tan^{-1} x \): \[ \sec(t) = \sqrt{1 + \tan^2(t)} = \sqrt{1 + x^2} \] \[ \tan(t) = x \] Thus, we have: \[ I = \frac{1}{2} \ln | \sqrt{1 + x^2} + x | + C \] ### Final Result The final answer is: \[ I = \frac{1}{2} \ln | \sqrt{1 + x^2} + x | + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int " x tan"^(-1) " x dx "

int " x sec"^(2) " x dx "

int " x sec"^(2) " x dx "

int sec x tan^(3)xdx=

int(sec x)/(tan^(2)x)dx

int (tan^(-1)x)dx

int x sec x*tan xdx

int secx. log (sec x+ tan x ) dx

Evaluate : int "("3e^(x) -(1)/(5x)+ " sec x tan x ) dx "

int sec x ln(sec x+tan x)dx=