Home
Class 12
MATHS
Evaluate: int((xtan^(-1)x)/((1+x^2)^(3se...

Evaluate: `int((xtan^(-1)x)/((1+x^2)^(3setminus2))\) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x \tan^{-1}(x)}{(1+x^2)^{\frac{3}{2}}} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Denominator We can express the denominator as: \[ (1+x^2)^{\frac{3}{2}} = (1+x^2)^{1} \cdot (1+x^2)^{\frac{1}{2}}. \] Thus, we can rewrite the integral as: \[ I = \int \frac{x \tan^{-1}(x)}{(1+x^2) \cdot (1+x^2)^{\frac{1}{2}}} \, dx. \] ### Step 2: Substitution Let \( y = \tan^{-1}(x) \). Then, we have: \[ x = \tan(y) \quad \text{and} \quad dx = \frac{1}{1+x^2} \, dy. \] Substituting these into the integral gives: \[ I = \int \frac{\tan(y) \cdot y}{(1+\tan^2(y))^{\frac{3}{2}}} \cdot \frac{1}{1+\tan^2(y)} \, dy. \] ### Step 3: Simplifying the Integral Using the identity \( 1 + \tan^2(y) = \sec^2(y) \), we can rewrite the integral: \[ I = \int \frac{y \tan(y)}{\sec^3(y)} \cdot \frac{1}{\sec^2(y)} \, dy = \int y \sin(y) \, dy. \] ### Step 4: Integration by Parts We will use integration by parts, where we let: - \( u = y \) and \( dv = \sin(y) \, dy \). - Then, \( du = dy \) and \( v = -\cos(y) \). Applying integration by parts: \[ I = -y \cos(y) + \int \cos(y) \, dy. \] ### Step 5: Evaluate the Remaining Integral The integral of \( \cos(y) \) is: \[ \int \cos(y) \, dy = \sin(y). \] Thus, we have: \[ I = -y \cos(y) + \sin(y) + C. \] ### Step 6: Substitute Back Now we substitute back \( y = \tan^{-1}(x) \): \[ I = -\tan^{-1}(x) \cos(\tan^{-1}(x)) + \sin(\tan^{-1}(x)) + C. \] ### Step 7: Simplify Using Right Triangle Using a right triangle where the opposite side is \( x \) and the adjacent side is \( 1 \): - The hypotenuse is \( \sqrt{1+x^2} \). - Therefore, \( \cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}} \) and \( \sin(\tan^{-1}(x)) = \frac{x}{\sqrt{1+x^2}} \). Substituting these values gives: \[ I = -\tan^{-1}(x) \cdot \frac{1}{\sqrt{1+x^2}} + \frac{x}{\sqrt{1+x^2}} + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = \frac{x - \tan^{-1}(x)}{\sqrt{1+x^2}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2sin^(-1)x)/((1-x^2)^(3setminus2))\ dx

Evaluate: int(sin^(-1)x)/((1-x^2)^(3setminus2))\ dx

Evaluate: int(xtan^(-1)x^2)/1dx

Evaluate int (xtan^(-1)x)/(1+x^2)^(3/2) dx

Evaluate: (i) int(x^2)/((a^2-x^2)^(3setminus2))\ dx (ii) int(x^7)/((a^2-x^2)^5)\ dx

Evaluate inte^-xtan^-1(e^x)dx

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

Evaluate : int(3x^2+1)dx

Evaluate: int (x^2-1)/(( x+1) (x-2))dx

Evaluate: int(3x-1)/((x+2)^2)\ dx