Home
Class 12
MATHS
int e^(sqrtx) dx...

`int e^(sqrtx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\sqrt{x}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = e^{\sqrt{x}} \). To express \( dx \) in terms of \( dt \), we first differentiate \( t \): \[ \frac{dt}{dx} = \frac{1}{2\sqrt{x}} e^{\sqrt{x}} \quad \Rightarrow \quad dt = \frac{1}{2\sqrt{x}} e^{\sqrt{x}} \, dx \] This implies: \[ dx = 2\sqrt{x} e^{-\sqrt{x}} \, dt \] ### Step 2: Express \( \sqrt{x} \) in terms of \( t \) From our substitution \( t = e^{\sqrt{x}} \), we can express \( \sqrt{x} \) as: \[ \sqrt{x} = \ln(t) \] ### Step 3: Substitute in the integral Now we can substitute \( \sqrt{x} \) and \( dx \) into the integral: \[ \int e^{\sqrt{x}} \, dx = \int t \cdot 2\sqrt{x} e^{-\sqrt{x}} \, dt = 2 \int t \cdot \ln(t) \, dt \] ### Step 4: Integration by parts We will use integration by parts for \( \int t \ln(t) \, dt \). Let: - \( u = \ln(t) \) \quad \( \Rightarrow \quad du = \frac{1}{t} \, dt \) - \( dv = t \, dt \) \quad \( \Rightarrow \quad v = \frac{t^2}{2} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int t \ln(t) \, dt = \frac{t^2}{2} \ln(t) - \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt = \frac{t^2}{2} \ln(t) - \frac{1}{2} \int t \, dt \] Calculating \( \int t \, dt \): \[ \int t \, dt = \frac{t^2}{2} \] Thus, \[ \int t \ln(t) \, dt = \frac{t^2}{2} \ln(t) - \frac{1}{4} t^2 + C \] ### Step 5: Substitute back Now substituting back into our integral: \[ 2 \int t \ln(t) \, dt = 2 \left( \frac{t^2}{2} \ln(t) - \frac{1}{4} t^2 \right) + C = t^2 \ln(t) - \frac{1}{2} t^2 + C \] ### Step 6: Replace \( t \) with \( e^{\sqrt{x}} \) Now we replace \( t \) back with \( e^{\sqrt{x}} \): \[ = (e^{\sqrt{x}})^2 \ln(e^{\sqrt{x}}) - \frac{1}{2} (e^{\sqrt{x}})^2 + C \] This simplifies to: \[ = e^{2\sqrt{x}} \cdot \sqrt{x} - \frac{1}{2} e^{2\sqrt{x}} + C \] ### Final Answer Thus, the final answer for the integral \( \int e^{\sqrt{x}} \, dx \) is: \[ = e^{2\sqrt{x}} \left( \sqrt{x} - \frac{1}{2} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^x(3+x) dx

int e^(2x+3) dx

int (1-x) sqrtx dx

int ((2+sqrtx)dx )/((x+1+sqrtx)^(2)) is equal to:

Integrate int e^(-x)dx

The value of int e^sqrtx/sqrtx(sqrtx + x) dx is equal to

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)

Evaluate int (1)/(x-sqrtx) dx

int (1)/(x+sqrtx) dx is equal to

The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c is the constant of integration) and f(ln((pi)/(4)))^(2)=sqrt2. Then, the number of solutions of f(x)=2e (AA x in R-{0}) is equal to