Home
Class 12
MATHS
int " log sin x . sec"^(2) " x dx "...

`int " log sin x . sec"^(2) " x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \log(\sin x) \sec^2 x \, dx \), we will use the integration by parts formula. The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Identify \( u \) and \( dv \) Let: - \( u = \log(\sin x) \) - \( dv = \sec^2 x \, dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{\sin x} \cos x \, dx = \cot x \, dx \] - Integrate \( dv \): \[ v = \int \sec^2 x \, dx = \tan x \] ### Step 3: Apply the integration by parts formula Now we can apply the integration by parts formula: \[ \int \log(\sin x) \sec^2 x \, dx = \log(\sin x) \tan x - \int \tan x \cot x \, dx \] ### Step 4: Simplify the integral Notice that: \[ \tan x \cot x = \frac{\sin x}{\cos x} \cdot \frac{\cos x}{\sin x} = 1 \] Thus, we have: \[ \int \tan x \cot x \, dx = \int 1 \, dx = x \] ### Step 5: Substitute back into the equation Now substituting back, we get: \[ \int \log(\sin x) \sec^2 x \, dx = \log(\sin x) \tan x - x + C \] ### Final Answer The final result is: \[ \int \log(\sin x) \sec^2 x \, dx = \log(\sin x) \tan x - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int " x sec"^(2) " x dx "

int " x sec"^(2) " x dx "

(i) int " x sec"^(2) " 2x dx "" "(ii) int " x sin"^(3) " x dx "

int " log"_(e) " x dx "

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx

Evaluate : int ("cos (log x)")/(x) " dx "

Evaluate : int (e^("log x "))/(x) " dx "

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

int log ( 1 + x^(2)) dx

int log (x^(2) +a^(2)) dx=?