Home
Class 12
MATHS
int e^(" sin x "). " sin 2x dx "...

`int e^(" sin x "). " sin 2x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\sin x} \sin 2x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral using the double angle identity for sine: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite the integral as: \[ \int e^{\sin x} \sin 2x \, dx = \int e^{\sin x} (2 \sin x \cos x) \, dx \] This simplifies to: \[ 2 \int e^{\sin x} \sin x \cos x \, dx \] ### Step 2: Substitution Next, we will use substitution. Let: \[ t = \sin x \] Then, differentiating both sides gives: \[ dt = \cos x \, dx \quad \Rightarrow \quad \cos x \, dx = dt \] Now, substituting \( t \) into the integral, we have: \[ 2 \int e^{t} t \, dt \] ### Step 3: Integration by Parts We will now apply integration by parts to the integral \( \int e^{t} t \, dt \). Let: - \( u = t \) (first function) - \( dv = e^{t} dt \) (second function) Then, we differentiate and integrate: - \( du = dt \) - \( v = e^{t} \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int e^{t} t \, dt = t e^{t} - \int e^{t} \, dt \] Now, we know that: \[ \int e^{t} \, dt = e^{t} \] So, substituting back gives: \[ \int e^{t} t \, dt = t e^{t} - e^{t} + C \] ### Step 4: Substitute Back Now, we substitute back \( t = \sin x \): \[ \int e^{\sin x} \sin 2x \, dx = 2 \left( \sin x e^{\sin x} - e^{\sin x} \right) + C \] This simplifies to: \[ 2 e^{\sin x} \left( \sin x - 1 \right) + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int e^{\sin x} \sin 2x \, dx = 2 e^{\sin x} (\sin x - 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sin 2x dx

int e^(x) sin x dx .

Evaluate : int (" sin 2 x ") /(" sin 5x. sin 3x ") "dx "

int e^x sin(e^x) dx

int e^(x). " sin x( sin x+ 2 cos x) dx "

int sin x .sin2x.sin3x dx

int x.sin x dx

int x sin^2(x/2) dx

int(sin x+x cos x)/(x sin x)dx

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….