Home
Class 12
MATHS
int e^(x). " cos"^(2) " x dx"...

` int e^(x). " cos"^(2) " x dx"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \cos^2 x \) We can use the trigonometric identity: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, we rewrite the integral: \[ \int e^x \cos^2 x \, dx = \int e^x \left(\frac{1 + \cos 2x}{2}\right) \, dx = \frac{1}{2} \int e^x \, dx + \frac{1}{2} \int e^x \cos 2x \, dx \] ### Step 2: Solve the first integral The first integral is straightforward: \[ \frac{1}{2} \int e^x \, dx = \frac{1}{2} e^x + C_1 \] ### Step 3: Solve the second integral using integration by parts Let \( I = \int e^x \cos 2x \, dx \). We will use integration by parts: - Let \( u = \cos 2x \) and \( dv = e^x \, dx \). - Then, \( du = -2 \sin 2x \, dx \) and \( v = e^x \). Using integration by parts: \[ I = uv - \int v \, du = e^x \cos 2x - \int e^x (-2 \sin 2x) \, dx \] This simplifies to: \[ I = e^x \cos 2x + 2 \int e^x \sin 2x \, dx \] ### Step 4: Solve the integral \( \int e^x \sin 2x \, dx \) using integration by parts again Let \( J = \int e^x \sin 2x \, dx \): - Let \( u = \sin 2x \) and \( dv = e^x \, dx \). - Then, \( du = 2 \cos 2x \, dx \) and \( v = e^x \). Using integration by parts: \[ J = uv - \int v \, du = e^x \sin 2x - \int e^x (2 \cos 2x) \, dx \] This simplifies to: \[ J = e^x \sin 2x - 2I \] ### Step 5: Substitute \( J \) back into the equation for \( I \) Now we have: \[ I = e^x \cos 2x + 2 \left( e^x \sin 2x - 2I \right) \] This leads to: \[ I = e^x \cos 2x + 2e^x \sin 2x - 4I \] Combining like terms gives: \[ 5I = e^x \cos 2x + 2e^x \sin 2x \] Thus, we find: \[ I = \frac{1}{5} e^x \cos 2x + \frac{2}{5} e^x \sin 2x \] ### Step 6: Combine results Now substituting \( I \) back into our original integral: \[ \int e^x \cos^2 x \, dx = \frac{1}{2} e^x + \frac{1}{2} \left( \frac{1}{5} e^x \cos 2x + \frac{2}{5} e^x \sin 2x \right) \] This simplifies to: \[ \int e^x \cos^2 x \, dx = \frac{1}{2} e^x + \frac{1}{10} e^x \cos 2x + \frac{1}{5} e^x \sin 2x + C \] ### Final Result Thus, the final answer is: \[ \int e^x \cos^2 x \, dx = \frac{1}{2} e^x + \frac{1}{10} e^x \cos 2x + \frac{1}{5} e^x \sin 2x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(3x) " cos 2x dx "

int e^(2x)dx

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

int x.e^(2x)dx

int(tan x + cos x)^(2) dx

Consider the integrals I_(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx,I_(2)=overset(1)underset(0)int e^(-x^(2))cos^(2)x dx,I_(3)=overset(1)underset(0)int e^(-x^(2//2))cos^(2)xdx and I_(4)=overset(1)underset(0)int e^(-x^(2//2))dx . The greatest of these integrals, is

(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "

Evaluate: int_ e^(x) . x^(2) dx

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx

int e^(x). " sin x( sin x+ 2 cos x) dx "