Home
Class 12
MATHS
Evaluate: (i) int1/(a^2-b^2\ x^2)\ dx (i...

Evaluate: (i) `int1/(a^2-b^2\ x^2)\ dx` (ii) `int1/(a^2\ x^2-b^2)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integrals given in the question, we will tackle each one step by step. ### (i) Evaluate the integral: \[ \int \frac{1}{a^2 - b^2 x^2} \, dx \] **Step 1: Factor out the constant** We can factor out \(b^2\) from the denominator: \[ \int \frac{1}{a^2 - b^2 x^2} \, dx = \int \frac{1}{b^2 \left(\frac{a^2}{b^2} - x^2\right)} \, dx = \frac{1}{b^2} \int \frac{1}{\frac{a^2}{b^2} - x^2} \, dx \] **Hint for Step 1:** Factor out constants from the integral to simplify the expression. **Step 2: Use the integral formula** We use the formula for the integral: \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C \] In our case, let \(a = \frac{a}{b}\): \[ \frac{1}{b^2} \cdot \frac{1}{2 \cdot \frac{a}{b}} \log \left| \frac{\frac{a}{b} + x}{\frac{a}{b} - x} \right| + C \] **Hint for Step 2:** Recall the integral formula for \(\int \frac{1}{a^2 - x^2} \, dx\) and substitute appropriately. **Step 3: Simplify the expression** Now, simplify the expression: \[ = \frac{1}{2ab} \log \left| \frac{a + bx}{a - bx} \right| + C \] **Final Answer for (i):** \[ \int \frac{1}{a^2 - b^2 x^2} \, dx = \frac{1}{2ab} \log \left| \frac{a + bx}{a - bx} \right| + C \] --- ### (ii) Evaluate the integral: \[ \int \frac{1}{a^2 x^2 - b^2} \, dx \] **Step 1: Factor out the constant** We can factor out \(a^2\) from the denominator: \[ \int \frac{1}{a^2 x^2 - b^2} \, dx = \int \frac{1}{a^2 \left(x^2 - \frac{b^2}{a^2}\right)} \, dx = \frac{1}{a^2} \int \frac{1}{x^2 - \frac{b^2}{a^2}} \, dx \] **Hint for Step 1:** Factor out constants from the integral to simplify the expression. **Step 2: Use the integral formula** We use the formula for the integral: \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C \] In our case, let \(a = \frac{b}{a}\): \[ = \frac{1}{a^2} \cdot \frac{1}{2 \cdot \frac{b}{a}} \log \left| \frac{x - \frac{b}{a}}{x + \frac{b}{a}} \right| + C \] **Hint for Step 2:** Recall the integral formula for \(\int \frac{1}{x^2 - a^2} \, dx\) and substitute appropriately. **Step 3: Simplify the expression** Now, simplify the expression: \[ = \frac{a}{2b} \log \left| \frac{ax - b}{ax + b} \right| + C \] **Final Answer for (ii):** \[ \int \frac{1}{a^2 x^2 - b^2} \, dx = \frac{a}{2b} \log \left| \frac{ax - b}{ax + b} \right| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(a^2-b^2x^2)dx

Evaluate: int1/(sqrt(a^2-b^2x^2))dx

Evaluate: (i) int1/(sqrt(a^2-b^2\ x^2))\ dx (ii) int1/(sqrt((2-x)^2+1))\ dx

Evaluate: int1/(a^2x^2+b^2)dx

Evaluate: (i) int1/(a^2\ x^2-b^2)\ dx (ii) int(x^2-1)/(x^2+4)\ dx

Evaluate: (i) int1/(x^2+6x+13)\ dx

Evaluate: (i) int1/(4x^2+12 x+5)\ dx (ii) int1/(x^2-10 x+34)\ dx

Evaluate: (i) int1/(4x^2+12 x+5)\ dx (ii) int1/(x^2-10 x+34)\ dx

Evaluate: int1/(a^2sin^2x+b^2cos^2x)\ dx

Evaluate: int1/(a^2sin^2x+b^2cos^2x)\ dx