Home
Class 12
MATHS
int (x)/((x-2)(x+1))dx...

`int (x)/((x-2)(x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x}{(x-2)(x+1)} \, dx \), we will use the method of partial fractions. ### Step-by-Step Solution: 1. **Set Up the Partial Fraction Decomposition**: We want to express the integrand in the form: \[ \frac{x}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1} \] where \( A \) and \( B \) are constants to be determined. 2. **Combine the Right Side**: To combine the right side, we find a common denominator: \[ \frac{A}{x-2} + \frac{B}{x+1} = \frac{A(x+1) + B(x-2)}{(x-2)(x+1)} \] Therefore, we have: \[ x = A(x+1) + B(x-2) \] 3. **Expand and Collect Terms**: Expanding the right side gives: \[ x = Ax + A + Bx - 2B \] Combining like terms: \[ x = (A + B)x + (A - 2B) \] 4. **Set Up the System of Equations**: Now, we can equate coefficients from both sides: - Coefficient of \( x \): \( A + B = 1 \) - Constant term: \( A - 2B = 0 \) 5. **Solve the System of Equations**: From the second equation, we can express \( A \) in terms of \( B \): \[ A = 2B \] Substituting this into the first equation: \[ 2B + B = 1 \implies 3B = 1 \implies B = \frac{1}{3} \] Now substituting back to find \( A \): \[ A = 2B = 2 \times \frac{1}{3} = \frac{2}{3} \] 6. **Rewrite the Integral**: Now we can rewrite the integral: \[ I = \int \left( \frac{2/3}{x-2} + \frac{1/3}{x+1} \right) \, dx \] 7. **Integrate Each Term**: Now we can integrate each term separately: \[ I = \frac{2}{3} \int \frac{1}{x-2} \, dx + \frac{1}{3} \int \frac{1}{x+1} \, dx \] The integrals are: \[ \int \frac{1}{x-2} \, dx = \ln |x-2| + C_1 \] \[ \int \frac{1}{x+1} \, dx = \ln |x+1| + C_2 \] 8. **Combine the Results**: Thus, we have: \[ I = \frac{2}{3} \ln |x-2| + \frac{1}{3} \ln |x+1| + C \] where \( C \) is the constant of integration. ### Final Result: \[ I = \frac{2}{3} \ln |x-2| + \frac{1}{3} \ln |x+1| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (x)/((x-2)(x-1)^(2))dx

int (x)/(x^(2)+2x+1)dx

Evaluate: int(x^2)/((x-1)^3(x+1))dx

Evaluate: int (x^(2) +x+3)/((x-2)(x+1)) dx

Evaluate: int(x^2)/((x-1)(x+1)^2)\ dx

int(x^2+x+3)/((x-2)(x+1))dx

Evaluate: int(x^2)/((x-1)^3(x+1))\ dx

Evaluate : int(x)/((x-1)^(2)(x+2))dx .

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx