Home
Class 12
MATHS
int (1)/((x-2)(x+2)(x-2))dx...

`int (1)/((x-2)(x+2)(x-2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(x-2)(x+2)(x-2)} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We can rewrite the integral as: \[ \int \frac{1}{(x-2)^2 (x+2)} \, dx \] ### Step 2: Set Up Partial Fractions We will express the integrand using partial fractions: \[ \frac{1}{(x-2)^2 (x+2)} = \frac{A}{x+2} + \frac{B}{x-2} + \frac{C}{(x-2)^2} \] where \( A \), \( B \), and \( C \) are constants to be determined. ### Step 3: Combine the Right Side Multiplying both sides by the denominator \((x-2)^2 (x+2)\) gives: \[ 1 = A(x-2)^2 + B(x-2)(x+2) + C(x+2) \] ### Step 4: Expand the Right Side Expanding the right-hand side: \[ 1 = A(x^2 - 4x + 4) + B(x^2 - 4) + C(x + 2) \] \[ = (A + B)x^2 + (-4A + C)x + (4A - 4B + 2C) \] ### Step 5: Set Up the System of Equations Now, we can equate coefficients from both sides: 1. \( A + B = 0 \) (coefficient of \( x^2 \)) 2. \( -4A + C = 0 \) (coefficient of \( x \)) 3. \( 4A - 4B + 2C = 1 \) (constant term) ### Step 6: Solve the System of Equations From equation (1), we can express \( B \) in terms of \( A \): \[ B = -A \] Substituting \( B \) into equation (2): \[ -4A + C = 0 \implies C = 4A \] Substituting \( B \) and \( C \) into equation (3): \[ 4A - 4(-A) + 2(4A) = 1 \] \[ 4A + 4A + 8A = 1 \implies 16A = 1 \implies A = \frac{1}{16} \] Now substituting back to find \( B \) and \( C \): \[ B = -\frac{1}{16}, \quad C = 4 \cdot \frac{1}{16} = \frac{1}{4} \] ### Step 7: Rewrite the Integral Now we can rewrite the integral using the values of \( A \), \( B \), and \( C \): \[ \int \left( \frac{1/16}{x+2} - \frac{1/16}{x-2} + \frac{1/4}{(x-2)^2} \right) \, dx \] ### Step 8: Integrate Each Term Now we integrate each term separately: \[ = \frac{1}{16} \int \frac{1}{x+2} \, dx - \frac{1}{16} \int \frac{1}{x-2} \, dx + \frac{1}{4} \int \frac{1}{(x-2)^2} \, dx \] \[ = \frac{1}{16} \ln |x+2| - \frac{1}{16} \ln |x-2| - \frac{1}{4(x-2)} + C \] ### Step 9: Combine the Logarithmic Terms Combining the logarithmic terms: \[ = \frac{1}{16} \left( \ln |x+2| - \ln |x-2| \right) - \frac{1}{4(x-2)} + C \] \[ = \frac{1}{16} \ln \left| \frac{x+2}{x-2} \right| - \frac{1}{4(x-2)} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1}{(x-2)(x+2)(x-2)} \, dx = \frac{1}{16} \ln \left| \frac{x+2}{x-2} \right| - \frac{1}{4(x-2)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (x)/((x-2)(x+1))dx

Evaluate: int(3x+1)/((x-2)^2(x+2))\ dx

Evaluate: int (x^2-1)/(( x+1) (x-2))dx

Evaluate : int(x)/((x-1)^(2)(x+2))dx .

Evaluate: int(2x+1)/((x-2)(x-3))\ dx

int((x^3+1)(x-2))/(x^2-x-2)dx

Evaluate: int(x^2+1)/((x-2)^2(x+3))\ dx

(1) int(2x+3)/((x-1)(x-2))dx

(1) int(2x+3)/((x-1)(x-2))dx

Evaluate: int(2x+1)/((x+1)(x-2))\ dx