Home
Class 12
MATHS
int (dx)/(x(1+log(e)x)(3+log(e)x))...

`int (dx)/(x(1+log_(e)x)(3+log_(e)x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{x(1 + \log_e x)(3 + \log_e x)}, \] we will follow these steps: ### Step 1: Substitution Let \( t = \log_e x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} dx \quad \Rightarrow \quad dx = x dt = e^t dt. \] Substituting \( x = e^t \) into the integral, we have: \[ I = \int \frac{e^t dt}{e^t(1 + t)(3 + t)} = \int \frac{dt}{(1 + t)(3 + t)}. \] ### Step 2: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{1}{(1 + t)(3 + t)} = \frac{A}{1 + t} + \frac{B}{3 + t}. \] Multiplying through by the denominator \((1 + t)(3 + t)\), we get: \[ 1 = A(3 + t) + B(1 + t). \] Expanding this gives: \[ 1 = 3A + At + B + Bt = (A + B)t + (3A + B). \] ### Step 3: Setting Up the System of Equations Now, we can set up the system of equations by equating coefficients: 1. \( A + B = 0 \) (coefficient of \( t \)) 2. \( 3A + B = 1 \) (constant term) ### Step 4: Solving the System From the first equation, we can express \( B \) in terms of \( A \): \[ B = -A. \] Substituting \( B = -A \) into the second equation: \[ 3A - A = 1 \quad \Rightarrow \quad 2A = 1 \quad \Rightarrow \quad A = \frac{1}{2}. \] Then, substituting back to find \( B \): \[ B = -\frac{1}{2}. \] ### Step 5: Writing the Integral Now we can rewrite the integral using the values of \( A \) and \( B \): \[ I = \int \left( \frac{1/2}{1 + t} - \frac{1/2}{3 + t} \right) dt = \frac{1}{2} \int \frac{dt}{1 + t} - \frac{1}{2} \int \frac{dt}{3 + t}. \] ### Step 6: Integrating Now we can integrate each term: \[ I = \frac{1}{2} \log |1 + t| - \frac{1}{2} \log |3 + t| + C, \] where \( C \) is the constant of integration. ### Step 7: Simplifying Using the properties of logarithms, we can combine the logarithms: \[ I = \frac{1}{2} \log \left| \frac{1 + t}{3 + t} \right| + C. \] ### Step 8: Back Substitution Finally, we substitute back \( t = \log_e x \): \[ I = \frac{1}{2} \log \left| \frac{1 + \log_e x}{3 + \log_e x} \right| + C. \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{dx}{x(1 + \log_e x)(3 + \log_e x)} = \frac{1}{2} \log \left| \frac{1 + \log_e x}{3 + \log_e x} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x cos^(2)(log_(e)x))dx

int((log _(e)x)^(3))/(x)dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Evaluate: int(e^(6\ (log)_e x)-e^(5\ (log)_e x))/(e^(4\ (log)_e x)-e^(3\ (log)_e x))\ dx

int{sin(log_(e)x)+cos(log_(e)x)}dx is equal to

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Let x and a be positive real numbers Statement 1: The sum of theries 1+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+(log_(e)x)^(2)+…to infty is x Statement2: The sum of the series 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)x))^(2)+(x^(3))/(3!)(log_(e)a)^(3)/(3!)+to infty is a^(x)