Home
Class 12
MATHS
int(x^3+3)/(x^3-3x)dx...

`int(x^3+3)/(x^3-3x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^3 + 3}{x^3 - 3x} \, dx \), we will follow these steps: ### Step 1: Long Division Since the degree of the numerator is the same as the degree of the denominator, we will perform polynomial long division. 1. Divide \( x^3 + 3 \) by \( x^3 - 3x \): - The first term is \( 1 \) (since \( x^3 \div x^3 = 1 \)). - Multiply \( 1 \) by \( x^3 - 3x \) to get \( x^3 - 3x \). - Subtract this from \( x^3 + 3 \): \[ (x^3 + 3) - (x^3 - 3x) = 3 + 3x \] Thus, we can rewrite the integral as: \[ \int \left( 1 + \frac{3 + 3x}{x^3 - 3x} \right) \, dx \] ### Step 2: Simplify the Integral Now we have: \[ \int 1 \, dx + \int \frac{3 + 3x}{x^3 - 3x} \, dx \] ### Step 3: Factor the Denominator Factor \( x^3 - 3x \): \[ x^3 - 3x = x(x^2 - 3) = x(x - \sqrt{3})(x + \sqrt{3}) \] ### Step 4: Partial Fraction Decomposition We will decompose \( \frac{3 + 3x}{x(x - \sqrt{3})(x + \sqrt{3})} \): \[ \frac{3 + 3x}{x(x - \sqrt{3})(x + \sqrt{3})} = \frac{A}{x} + \frac{B}{x - \sqrt{3}} + \frac{C}{x + \sqrt{3}} \] Multiplying through by the denominator: \[ 3 + 3x = A(x - \sqrt{3})(x + \sqrt{3}) + Bx(x + \sqrt{3}) + Cx(x - \sqrt{3}) \] ### Step 5: Solve for Coefficients To find \( A, B, \) and \( C \), we can substitute convenient values for \( x \): 1. Let \( x = 0 \): \[ 3 = A(-\sqrt{3})(\sqrt{3}) \implies A = -\frac{3}{3} = -1 \] 2. Let \( x = \sqrt{3} \): \[ 3 + 3\sqrt{3} = B\sqrt{3}(\sqrt{3} + \sqrt{3}) \implies 3 + 3\sqrt{3} = 6B \implies B = \frac{1 + \sqrt{3}}{2} \] 3. Let \( x = -\sqrt{3} \): \[ 3 - 3\sqrt{3} = C(-\sqrt{3})(-\sqrt{3} - \sqrt{3}) \implies 3 - 3\sqrt{3} = 6C \implies C = \frac{1 - \sqrt{3}}{2} \] ### Step 6: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( 1 - \frac{1}{x} + \frac{(1 + \sqrt{3})/2}{x - \sqrt{3}} + \frac{(1 - \sqrt{3})/2}{x + \sqrt{3}} \right) \, dx \] ### Step 7: Integrate Each Term Now we can integrate each term separately: 1. \( \int 1 \, dx = x \) 2. \( \int -\frac{1}{x} \, dx = -\ln |x| \) 3. \( \int \frac{(1 + \sqrt{3})/2}{x - \sqrt{3}} \, dx = \frac{(1 + \sqrt{3})}{2} \ln |x - \sqrt{3}| \) 4. \( \int \frac{(1 - \sqrt{3})/2}{x + \sqrt{3}} \, dx = \frac{(1 - \sqrt{3})}{2} \ln |x + \sqrt{3}| \) ### Step 8: Combine Results Combining all the results, we have: \[ \int \frac{x^3 + 3}{x^3 - 3x} \, dx = x - \ln |x| + \frac{(1 + \sqrt{3})}{2} \ln |x - \sqrt{3}| + \frac{(1 - \sqrt{3})}{2} \ln |x + \sqrt{3}| + C \] ### Final Answer \[ \int \frac{x^3 + 3}{x^3 - 3x} \, dx = x - \ln |x| + \frac{(1 + \sqrt{3})}{2} \ln |x - \sqrt{3}| + \frac{(1 - \sqrt{3})}{2} \ln |x + \sqrt{3}| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int( x^3)/(x^2-3)dx

Evaluate: int(x^3-1)/(x^3+x)\ dx

Evaluate int(x^3)/(x-2)dx

Find : int{(x^3 + 1)/(x^3-x)} dx

int(2x+3)/((x-1)^3)dx

Evaluate: int(x^3)/((x^2+1)^3)dx

Evaluate: int(x^3)/((x^2+1)^3)dx

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

int(x+3)dx

Evaluate: int(x^3)/(x+1)dx