Home
Class 12
MATHS
int (e^(x)dx)/(e^(2x)+4e^(x)+3)...

`int (e^(x)dx)/(e^(2x)+4e^(x)+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^x \, dx}{e^{2x} + 4e^x + 3}, \] we will follow these steps: ### Step 1: Substitute \( t = e^x \) Let \( t = e^x \). Then, differentiating both sides gives us \( dt = e^x \, dx \), or equivalently, \( dx = \frac{dt}{t} \). ### Step 2: Rewrite the integral Substituting \( e^x \) with \( t \) in the integral, we have: \[ I = \int \frac{t \, \frac{dt}{t}}{t^2 + 4t + 3} = \int \frac{dt}{t^2 + 4t + 3}. \] ### Step 3: Factor the denominator Next, we factor the quadratic expression in the denominator: \[ t^2 + 4t + 3 = (t + 3)(t + 1). \] So the integral becomes: \[ I = \int \frac{dt}{(t + 3)(t + 1)}. \] ### Step 4: Use Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{1}{(t + 3)(t + 1)} = \frac{A}{t + 3} + \frac{B}{t + 1}. \] Multiplying through by the denominator \((t + 3)(t + 1)\) gives: \[ 1 = A(t + 1) + B(t + 3). \] Expanding this, we get: \[ 1 = At + A + Bt + 3B = (A + B)t + (A + 3B). \] Setting coefficients equal, we have: 1. \( A + B = 0 \) 2. \( A + 3B = 1 \) From the first equation, \( A = -B \). Substituting into the second equation: \[ -B + 3B = 1 \implies 2B = 1 \implies B = \frac{1}{2}. \] Thus, \( A = -\frac{1}{2} \). ### Step 5: Rewrite the integral Now we can rewrite the integral: \[ I = \int \left( \frac{-\frac{1}{2}}{t + 3} + \frac{\frac{1}{2}}{t + 1} \right) dt. \] This simplifies to: \[ I = -\frac{1}{2} \int \frac{dt}{t + 3} + \frac{1}{2} \int \frac{dt}{t + 1}. \] ### Step 6: Integrate Now we integrate each term: \[ I = -\frac{1}{2} \ln |t + 3| + \frac{1}{2} \ln |t + 1| + C, \] where \( C \) is the constant of integration. ### Step 7: Combine the logarithms Using the properties of logarithms, we can combine these: \[ I = \frac{1}{2} \left( \ln |t + 1| - \ln |t + 3| \right) + C = \frac{1}{2} \ln \left| \frac{t + 1}{t + 3} \right| + C. \] ### Step 8: Substitute back for \( t \) Finally, substituting back \( t = e^x \): \[ I = \frac{1}{2} \ln \left| \frac{e^x + 1}{e^x + 3} \right| + C. \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{2} \ln \left| \frac{e^x + 1}{e^x + 3} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(2x)dx

int (e^(x))/(e^(x) + e^(-x))dx

int x.e^(2x)dx

int (e^x)/e^(2x-4) dx

int e^(2x+3) dx

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int (dx)/( e^(x) + e^(-x) +2) is equal to

Evaluate : int_( (dx)/(e^(x)+e^(-x)) )

int(dx)/(e^(x)+e^(-x)) equals

int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A=_________ _, B=_________, C=___________