Home
Class 12
MATHS
Evaluate: int1/(x\ (x^4+1))\ dx...

Evaluate: `int1/(x\ (x^4+1))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{x(x^4 + 1)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x(x^4 + 1)} \, dx \] ### Step 2: Factor Out the Highest Degree Term We can factor out \( x^4 \) from the denominator: \[ I = \int \frac{1}{x \left( x^4 + 1 \right)} \, dx = \int \frac{1}{x^5 \left( 1 + \frac{1}{x^4} \right)} \, dx \] ### Step 3: Substitution Now, we will use a substitution. Let: \[ t = 1 + \frac{1}{x^4} \] Then, we differentiate \( t \): \[ dt = -\frac{4}{x^5} \, dx \quad \Rightarrow \quad dx = -\frac{x^5}{4} \, dt \] ### Step 4: Express \( dx \) in Terms of \( t \) From our substitution, we can express \( \frac{dx}{x^5} \): \[ \frac{dx}{x^5} = -\frac{1}{4} dt \] ### Step 5: Substitute Back into the Integral Now we substitute \( t \) and \( dx \) into the integral: \[ I = \int \frac{-1}{4} \frac{1}{t} \, dt \] ### Step 6: Integrate The integral of \( \frac{1}{t} \) is: \[ I = -\frac{1}{4} \ln |t| + C \] ### Step 7: Substitute Back for \( t \) Now we substitute back \( t = 1 + \frac{1}{x^4} \): \[ I = -\frac{1}{4} \ln \left| 1 + \frac{1}{x^4} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x(x^4 + 1)} \, dx = -\frac{1}{4} \ln \left| 1 + \frac{1}{x^4} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(x\ (x^n+1))\ dx (ii) int1/(x(x^5+1))\ dx

Evaluate: int1/(x\ sqrt(x^4-1))\ dx

Evaluate: int1/(x(x-2)(x-4))\ dx

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(x^4-1)dx

Evaluate: int1/(x^4+1)dx

Evaluate: int(x^2-1)/(x^4+1)\ dx

Evaluate: int1/(x^4+x^2+1)\ dx

Evaluate: int1/(x^4+3x^2+1)\ dx

Evaluate: int1/(e^x+1)\ dx