Home
Class 12
MATHS
int (x)/(x^(2)+2x+1)dx...

`int (x)/(x^(2)+2x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x}{x^2 + 2x + 1} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator Notice that the denominator can be factored: \[ x^2 + 2x + 1 = (x + 1)^2 \] Thus, we can rewrite the integral as: \[ \int \frac{x}{(x + 1)^2} \, dx \] ### Step 2: Split the Numerator Next, we can express \( x \) in terms of \( (x + 1) \): \[ x = (x + 1) - 1 \] Now, substitute this into the integral: \[ \int \frac{(x + 1) - 1}{(x + 1)^2} \, dx = \int \left( \frac{x + 1}{(x + 1)^2} - \frac{1}{(x + 1)^2} \right) \, dx \] This simplifies to: \[ \int \left( \frac{1}{x + 1} - \frac{1}{(x + 1)^2} \right) \, dx \] ### Step 3: Integrate Each Term Now we can integrate each term separately: 1. The integral of \( \frac{1}{x + 1} \) is: \[ \int \frac{1}{x + 1} \, dx = \log |x + 1| + C_1 \] 2. The integral of \( -\frac{1}{(x + 1)^2} \) is: \[ \int -\frac{1}{(x + 1)^2} \, dx = \frac{1}{x + 1} + C_2 \] ### Step 4: Combine the Results Putting it all together, we have: \[ \int \frac{x}{(x + 1)^2} \, dx = \log |x + 1| - \frac{1}{x + 1} + C \] where \( C = C_1 + C_2 \) is a constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x}{x^2 + 2x + 1} \, dx = \log |x + 1| - \frac{1}{x + 1} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int (x+1)/(x^(2) + 2x +1)dx

int (x)/((x-2)(x+1))dx

int(3x+1)/(2x^(2)+x-1)dx

int(x^2)/(x^(2)+1)dx

int(2x-1)/(2x^2+2x+1)dx

int((x^(2)+2))/(x+1)dx

int x^2/(1+x^2) dx

Evaluate: int(3-4x)/(2x^(2)-3x+1)dx

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx