Home
Class 12
MATHS
int (1)/((x+b)(x^(2)+a^(2)))dx...

`int (1)/((x+b)(x^(2)+a^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(x+b)(x^2+a^2)} \, dx \), we will use the method of partial fractions. Here’s the step-by-step solution: ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{1}{(x+b)(x^2+a^2)} = \frac{A}{x+b} + \frac{Bx+C}{x^2+a^2} \] where \( A \), \( B \), and \( C \) are constants to be determined. ### Step 2: Clear the denominators Multiply both sides by the denominator \( (x+b)(x^2+a^2) \): \[ 1 = A(x^2 + a^2) + (Bx + C)(x + b) \] ### Step 3: Expand the right-hand side Expanding the right-hand side gives: \[ 1 = A(x^2 + a^2) + Bx^2 + Bbx + Cx + Cb \] Combining like terms, we have: \[ 1 = (A + B)x^2 + (Bb + C)x + (Aa^2 + Cb) \] ### Step 4: Set up the system of equations Now, we equate the coefficients from both sides: 1. Coefficient of \( x^2 \): \( A + B = 0 \) 2. Coefficient of \( x \): \( Bb + C = 0 \) 3. Constant term: \( Aa^2 + Cb = 1 \) ### Step 5: Solve the system of equations From the first equation, we can express \( B \) in terms of \( A \): \[ B = -A \] Substituting \( B = -A \) into the second equation: \[ -bA + C = 0 \implies C = bA \] Substituting \( B \) and \( C \) into the third equation: \[ Aa^2 + bA \cdot b = 1 \implies A(a^2 + b^2) = 1 \implies A = \frac{1}{a^2 + b^2} \] Now substituting back to find \( B \) and \( C \): \[ B = -\frac{1}{a^2 + b^2}, \quad C = \frac{b}{a^2 + b^2} \] ### Step 6: Rewrite the integral Now we can rewrite the integral: \[ \int \left( \frac{1}{a^2 + b^2} \cdot \frac{1}{x+b} - \frac{1}{a^2 + b^2} \cdot \frac{x}{x^2 + a^2} + \frac{b}{a^2 + b^2} \cdot \frac{1}{x^2 + a^2} \right) dx \] ### Step 7: Integrate each term 1. The first term: \[ \int \frac{1}{a^2 + b^2} \cdot \frac{1}{x+b} \, dx = \frac{1}{a^2 + b^2} \ln |x+b| \] 2. The second term: \[ -\frac{1}{a^2 + b^2} \int \frac{x}{x^2 + a^2} \, dx = -\frac{1}{2(a^2 + b^2)} \ln |x^2 + a^2| \] 3. The third term: \[ \frac{b}{a^2 + b^2} \int \frac{1}{x^2 + a^2} \, dx = \frac{b}{a^2 + b^2} \cdot \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) \] ### Step 8: Combine the results Putting it all together, we have: \[ \int \frac{1}{(x+b)(x^2+a^2)} \, dx = \frac{1}{a^2 + b^2} \ln |x+b| - \frac{1}{2(a^2 + b^2)} \ln |x^2 + a^2| + \frac{b}{a(a^2 + b^2)} \tan^{-1} \left( \frac{x}{a} \right) + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{(x+b)(x^2+a^2)} \, dx = \frac{1}{a^2 + b^2} \ln |x+b| - \frac{1}{2(a^2 + b^2)} \ln |x^2 + a^2| + \frac{b}{a(a^2 + b^2)} \tan^{-1} \left( \frac{x}{a} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (1)/(b^(2) +a^(2)x^(2)) " dx "

int (1)/((x-2)(x+2)(x-2))dx

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

int(dx)/((x-b)^3(x-a)^2)

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate: int (x^2-1)/(( x+1) (x-2))dx

Evaluate inte^(x)((1-x)/(1+x^(2)))^(2)dx .

int(1)/((asin x+b cos x)^(2))dx

int (x)/((x-2)(x+1))dx

int_(-1)^(2) (x) /((x^(2)+1)^(2))dx