Home
Class 12
MATHS
int (1-cosx) /(cos x(1+cos x)) dx...

`int (1-cosx) /(cos x(1+cos x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx \), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Split the Integral We can split the integral into two parts: \[ \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx = \int \frac{1}{\cos x (1 + \cos x)} \, dx - \int \frac{\cos x}{\cos x (1 + \cos x)} \, dx \] ### Step 2: Simplify the Second Integral The second integral simplifies as follows: \[ \int \frac{\cos x}{\cos x (1 + \cos x)} \, dx = \int \frac{1}{1 + \cos x} \, dx \] Thus, we rewrite the integral: \[ \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx = \int \frac{1}{\cos x (1 + \cos x)} \, dx - \int \frac{1}{1 + \cos x} \, dx \] ### Step 3: Change of Variables for the First Integral For the first integral \( \int \frac{1}{\cos x (1 + \cos x)} \, dx \), we can use the identity \( 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \): \[ \int \frac{1}{\cos x (1 + \cos x)} \, dx = \int \frac{1}{\cos x \cdot 2 \cos^2\left(\frac{x}{2}\right)} \, dx \] This can be rewritten as: \[ \frac{1}{2} \int \frac{1}{\cos x} \cdot \frac{1}{\cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 4: Solve Each Integral 1. The first integral becomes: \[ \frac{1}{2} \int \sec x \cdot \sec^2\left(\frac{x}{2}\right) \, dx \] To integrate \( \sec x \), we can multiply and divide by \( \sec x + \tan x \): \[ \int \sec x \, dx = \ln | \sec x + \tan x | + C \] 2. The second integral \( \int \frac{1}{1 + \cos x} \, dx \) can be simplified using the same identity: \[ \int \frac{1}{1 + \cos x} \, dx = \int \frac{1}{2 \cos^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \sec^2\left(\frac{x}{2}\right) \, dx \] This integral evaluates to: \[ \frac{1}{2} \cdot 2 \tan\left(\frac{x}{2}\right) + C = \tan\left(\frac{x}{2}\right) + C \] ### Step 5: Combine the Results Combining the results from both integrals, we have: \[ \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx = \frac{1}{2} \ln | \sec x + \tan x | - \tan\left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx = \frac{1}{2} \ln | \sec x + \tan x | - \tan\left(\frac{x}{2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (1-cos x)/(1+cos x) dx=?

Evaluate: int(sin x)/(cos x(1+cos x))dx

Evaluate: int(1+2xsinx-cosx)/(x(1-cosx))dx

int (cosx-cos2x)/(1-cosx) dx

int (cos 5x + cos 4x)/(1-2cos3x) dx

The value of int (cos 8x-cos 7x)/(1+2 cos 5x)dx , is

int (1-sinx )/ (1-cos x) dx=?

(i) int (cos x-x sin x)/(x cos x) dx " "(ii) int(1+ cos x)/(x +sin x)^3 dx

Evaluate: (i) intsqrt((1+cos2x)/(1-cos2x))\ dx (ii) intsqrt((1-cosx)/(1+cosx))\ dx

Evaluate: int(cosx-cos2x)/(1-cosx)\ dx