Home
Class 12
MATHS
int(0)^(a) y^(2) dy...

`int_(0)^(a) y^(2) dy`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{a} y^{2} \, dy \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the definite integral of \( y^2 \) from 0 to \( a \). ### Step 2: Apply the power rule for integration The power rule for integration states that: \[ \int y^n \, dy = \frac{y^{n+1}}{n+1} + C \] In our case, \( n = 2 \). Therefore, we have: \[ \int y^2 \, dy = \frac{y^{2+1}}{2+1} = \frac{y^{3}}{3} + C \] ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from 0 to \( a \): \[ \int_{0}^{a} y^{2} \, dy = \left[ \frac{y^{3}}{3} \right]_{0}^{a} \] This means we will substitute \( a \) and \( 0 \) into \( \frac{y^{3}}{3} \). ### Step 4: Substitute the limits Substituting the upper limit \( a \): \[ \frac{a^{3}}{3} \] Now substituting the lower limit \( 0 \): \[ \frac{0^{3}}{3} = 0 \] ### Step 5: Calculate the result Now we subtract the lower limit from the upper limit: \[ \frac{a^{3}}{3} - 0 = \frac{a^{3}}{3} \] Thus, the value of the definite integral \( \int_{0}^{a} y^{2} \, dy \) is: \[ \frac{a^{3}}{3} \] ### Final Answer \[ \int_{0}^{a} y^{2} \, dy = \frac{a^{3}}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

If f(x) =x + int_(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x) if x and y are independent.

Find f(x) if it satisfies the relation f(x) = e^(x) + int_(0)^(1) (x+ye^(x))f(y) dy .

If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).

Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and, int_(0)^(2) Delta(y)dy=-16 , where a,b,c,d are in A.P., then the common difference of the A.P. is equal to

Solve the differential equation (dy)/(dx) = y + int_(0)^(1)y(x)dx , given that the value of y is 1 , when x = 0 .

let f (x) = int _(0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Find the number of roots of the equation f (x) =0.

Area bounded by the curves y^2=4x and y=2x is equal to (A) int_0^1(2sqrt(x)-2x)dx (B) 1/3 (C) 2/3 (D) int_0^2(y/2-y^2/4)dy

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

If f(y)=e^y,g(y)=y,y>0, and F(t)=int_0^t f(t-y)g(y) dy , then