Home
Class 12
MATHS
int(0)^(pi//2)sqrt(1-sin 2x)dx is equal ...

`int_(0)^(pi//2)sqrt(1-sin 2x)dx` is equal to :

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2) (sqrt(3)-1)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(pi//2)sqrt( 1- sin 2 x ) dx is equal to

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(-pi //2)^(pi//2) sin |x|dx is equal to