Home
Class 12
MATHS
int(0)^(pi) sin 3x dx...

`int_(0)^(pi) sin 3x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{0}^{\pi} \sin(3x) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 3x \). Then, differentiate both sides: \[ dt = 3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3} \] ### Step 2: Change the limits Now we need to change the limits of integration according to our substitution: - When \( x = 0 \), \( t = 3 \cdot 0 = 0 \) - When \( x = \pi \), \( t = 3 \cdot \pi = 3\pi \) ### Step 3: Rewrite the integral Substituting \( t \) and \( dx \) into the integral, we get: \[ \int_{0}^{\pi} \sin(3x) \, dx = \int_{0}^{3\pi} \sin(t) \cdot \frac{dt}{3} = \frac{1}{3} \int_{0}^{3\pi} \sin(t) \, dt \] ### Step 4: Evaluate the integral The integral of \( \sin(t) \) is \( -\cos(t) \). Thus, we can evaluate the integral: \[ \frac{1}{3} \int_{0}^{3\pi} \sin(t) \, dt = \frac{1}{3} \left[ -\cos(t) \right]_{0}^{3\pi} \] Calculating the limits: \[ = \frac{1}{3} \left( -\cos(3\pi) + \cos(0) \right) \] ### Step 5: Calculate the cosine values We know that: \[ \cos(3\pi) = -1 \quad \text{and} \quad \cos(0) = 1 \] Substituting these values back, we have: \[ = \frac{1}{3} \left( -(-1) + 1 \right) = \frac{1}{3} \left( 1 + 1 \right) = \frac{1}{3} \cdot 2 = \frac{2}{3} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{\pi} \sin(3x) \, dx \) is: \[ \frac{2}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/4) sin 2x dx

Evaluate : int_(0)^(pi//2) sin x dx

int_(0)^(pi) [2sin x]dx=

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi//2) x sin x cos x dx

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

Evaluate : int _(0)^(pi//4) sin 2x sin 3 x dx