Home
Class 12
MATHS
int(0)^(pi//2) cos 3x dx...

`int_(0)^(pi//2) cos 3x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \cos(3x) \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ \int_{0}^{\frac{\pi}{2}} \cos(3x) \, dx \] ### Step 2: Find the antiderivative The antiderivative of \( \cos(3x) \) can be found using the formula for the integral of cosine: \[ \int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \] In our case, \( k = 3 \), so: \[ \int \cos(3x) \, dx = \frac{1}{3} \sin(3x) + C \] ### Step 3: Evaluate the definite integral Now we evaluate the definite integral from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_{0}^{\frac{\pi}{2}} \cos(3x) \, dx = \left[ \frac{1}{3} \sin(3x) \right]_{0}^{\frac{\pi}{2}} \] ### Step 4: Substitute the limits We substitute the upper limit \( \frac{\pi}{2} \) and the lower limit \( 0 \): \[ = \frac{1}{3} \sin\left(3 \cdot \frac{\pi}{2}\right) - \frac{1}{3} \sin(3 \cdot 0) \] This simplifies to: \[ = \frac{1}{3} \sin\left(\frac{3\pi}{2}\right) - \frac{1}{3} \sin(0) \] ### Step 5: Calculate the sine values Now we calculate the sine values: \[ \sin\left(\frac{3\pi}{2}\right) = -1 \quad \text{and} \quad \sin(0) = 0 \] Substituting these values back, we get: \[ = \frac{1}{3}(-1) - \frac{1}{3}(0) = -\frac{1}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \cos(3x) \, dx = -\frac{1}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) cos 2x dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

(i) int_(0)^(pi//2) x cos x dx (i) int_(1)^(3) x. log x dx

Integrate the following functions int_(0)^(pi//2) " cos x dx"

Evaluate: int_(0)^(pi//2) cos2x dx

int_(0)^(pi/2) cos^(2) x dx

Evaluate the following integrals (i) int_(R)^(oo)(GMm)/(x^(2))dx (ii) int_(r_(1))^(r_(2)) -k(q_1q_2)/(x^(2))dx (iii) int_(u)^(v) Mv dv (iv) int_(0)^(oo) x^(-1//2) dx (v) int_(0)^(pi//2) sinx dx (vi) int_(0)^(pi//2) cosx dx (vii) int_(-pi//2)^(pi//2) cos x dx

Evaluate : int_(0)^(pi) |cos x| dx

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

int_(0)^(pi//4) cos^(2) x dx