Home
Class 12
MATHS
int(0)^(pi//4) sin ^(2) x dx...

`int_(0)^(pi//4) sin ^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx \), we can use a trigonometric identity to simplify the expression. Here’s a step-by-step solution: ### Step 1: Use the trigonometric identity We know that: \[ \cos 2x = 1 - 2\sin^2 x \] From this, we can express \(\sin^2 x\) in terms of \(\cos 2x\): \[ \sin^2 x = \frac{1 - \cos 2x}{2} \] ### Step 2: Substitute into the integral Substituting \(\sin^2 x\) into the integral gives: \[ \int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos 2x}{2} \, dx \] ### Step 3: Factor out the constant We can factor out the \(\frac{1}{2}\): \[ = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 - \cos 2x) \, dx \] ### Step 4: Separate the integral Now we can separate the integral into two parts: \[ = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} 1 \, dx - \int_{0}^{\frac{\pi}{4}} \cos 2x \, dx \right) \] ### Step 5: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{4}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 6: Evaluate the second integral For the second integral, we have: \[ \int \cos 2x \, dx = \frac{1}{2} \sin 2x \] Thus, \[ \int_{0}^{\frac{\pi}{4}} \cos 2x \, dx = \left[ \frac{1}{2} \sin 2x \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \left( \sin \frac{\pi}{2} - \sin 0 \right) = \frac{1}{2} (1 - 0) = \frac{1}{2} \] ### Step 7: Combine the results Now substituting back into our expression: \[ = \frac{1}{2} \left( \frac{\pi}{4} - \frac{1}{2} \right) \] \[ = \frac{1}{2} \cdot \frac{\pi}{4} - \frac{1}{2} \cdot \frac{1}{2} = \frac{\pi}{8} - \frac{1}{4} \] ### Final Answer Thus, the final result is: \[ \int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx = \frac{\pi}{8} - \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin ^(4) x dx

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi/4) sin 2x dx

Evaluate : int_(0)^(pi//2) sin x dx

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

int_(0)^(pi/6) sin2x . cosx dx

Evaluate : int _(0)^(pi//4) sin 2x sin 3 x dx

int_(0)^(pi//2) x sin x cos x dx

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :