Home
Class 12
MATHS
int(0)^(pi//2) sqrt(1- cos 2x) dx...

`int_(0)^(pi//2) sqrt(1- cos 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 2x} \, dx \), we can follow these steps: ### Step 1: Use the trigonometric identity We know that \( \cos 2x = 1 - 2\sin^2 x \). Therefore, we can rewrite \( 1 - \cos 2x \) as: \[ 1 - \cos 2x = 1 - (1 - 2\sin^2 x) = 2\sin^2 x \] ### Step 2: Substitute into the integral Now, substituting this back into the integral, we have: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 2x} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{2\sin^2 x} \, dx \] ### Step 3: Simplify the square root The square root of \( 2\sin^2 x \) can be simplified: \[ \sqrt{2\sin^2 x} = \sqrt{2} \cdot \sin x \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{2} \cdot \sin x \, dx \] ### Step 4: Factor out the constant We can factor out the constant \( \sqrt{2} \): \[ \sqrt{2} \int_{0}^{\frac{\pi}{2}} \sin x \, dx \] ### Step 5: Integrate \( \sin x \) The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] So, we evaluate: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \left[-\cos x\right]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = -0 + 1 = 1 \] ### Step 6: Multiply by the constant Now, substituting back, we have: \[ \sqrt{2} \cdot 1 = \sqrt{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 2x} \, dx = \sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int _(0)^(pi//2) sqrt(1+ cos x dx)

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)) dx is equal to

The value of int_(0)^(32pi//3) sqrt(1+cos2x)dx is

int_(0)^(pi//2) (1)/(4+3 cos x)dx

Evaluate the following integral : int_pi^(3pi//2)sqrt(1-cos)\ 2x\ dx

The value of the integral int_(0)^(400pi) sqrt(1-cos2x)dx , is

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi//2) x sinx cos x dx=?

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)