Home
Class 12
MATHS
int0^a(dx)/(sqrt(a x-x^2))...

`int_0^a(dx)/(sqrt(a x-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^a \frac{dx}{\sqrt{ax - x^2}} \), we will follow a systematic approach: ### Step 1: Rewrite the integrand We start with the expression under the square root: \[ \sqrt{ax - x^2} = \sqrt{- (x^2 - ax)} = \sqrt{-1 \cdot (x^2 - ax)} \] To make the expression easier to handle, we can factor out a negative sign: \[ = \sqrt{-(x^2 - ax)} = \sqrt{-(x^2 - ax + \frac{a^2}{4} - \frac{a^2}{4})} = \sqrt{\frac{a^2}{4} - (x - \frac{a}{2})^2} \] Thus, we can rewrite the integral as: \[ I = \int_0^a \frac{dx}{\sqrt{\frac{a^2}{4} - (x - \frac{a}{2})^2}} \] ### Step 2: Change of variables Let \( u = x - \frac{a}{2} \). Then \( dx = du \) and the limits change as follows: - When \( x = 0 \), \( u = 0 - \frac{a}{2} = -\frac{a}{2} \) - When \( x = a \), \( u = a - \frac{a}{2} = \frac{a}{2} \) Now the integral becomes: \[ I = \int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{du}{\sqrt{\frac{a^2}{4} - u^2}} \] ### Step 3: Recognize the integral form The integral \( \int \frac{du}{\sqrt{a^2 - u^2}} \) is known to be equal to \( \sin^{-1} \left( \frac{u}{a} \right) + C \). Thus, we can evaluate: \[ I = \int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{du}{\sqrt{\frac{a^2}{4} - u^2}} = 2 \sin^{-1} \left( \frac{u}{\frac{a}{2}} \right) \text{ evaluated from } -\frac{a}{2} \text{ to } \frac{a}{2} \] ### Step 4: Evaluate the integral Evaluating at the limits: \[ = 2 \left[ \sin^{-1} \left( \frac{\frac{a}{2}}{\frac{a}{2}} \right) - \sin^{-1} \left( \frac{-\frac{a}{2}}{\frac{a}{2}} \right) \right] \] This simplifies to: \[ = 2 \left[ \sin^{-1}(1) - \sin^{-1}(-1) \right] \] Since \( \sin^{-1}(1) = \frac{\pi}{2} \) and \( \sin^{-1}(-1) = -\frac{\pi}{2} \): \[ = 2 \left[ \frac{\pi}{2} - (-\frac{\pi}{2}) \right] = 2 \left[ \frac{\pi}{2} + \frac{\pi}{2} \right] = 2 \pi \] ### Final Answer Thus, the value of the integral is: \[ I = \pi \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^a(dx)/(x+sqrt((a^2-x^2)))orint_0^(pi/2)(d theta)/(1+tantheta)

Evaluate: int_0^a(dx)/(x+sqrt((a^2-x^2)))orint_0^(pi/2)(d theta)/(1+tantheta)

Evaluate: int_0^a(x^4)/(sqrt(a^2-x^2))dx

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

Evaluate: (i) int_0^4 1/(sqrt(x^2+2x+3))dx (ii) int_0^a1/(sqrt(a x-x^2))dx

Prove that pi/6

Evaluate the following integral: int_0^a x/(sqrt(a^2+x^2))dx

Evaluate : int_(0)^(4) (dx)/(sqrt(x^(2) +2x +3))

Prove that pi/6 lt int_0^1(dx) (sqrt(4-x^2-x^3)) lt pi/(4sqrt(2))

Prove that : int_(0)^(a) (dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)