Home
Class 12
MATHS
(i) int(0)^(pi//2) x cos x dx (i) int(...

`(i) int_(0)^(pi//2) x cos x dx`
(i) `int_(1)^(3) x. log x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \(\int_{0}^{\frac{\pi}{2}} x \cos x \, dx\) 1. **Apply Integration by Parts**: We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \(u = x\) (which gives \(du = dx\)) - \(dv = \cos x \, dx\) (which gives \(v = \sin x\)) 2. **Substitute into the formula**: \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx \] 3. **Integrate \(\sin x\)**: \[ \int \sin x \, dx = -\cos x \] Therefore, \[ \int x \cos x \, dx = x \sin x + \cos x \] 4. **Evaluate the definite integral from \(0\) to \(\frac{\pi}{2}\)**: \[ \left[ x \sin x + \cos x \right]_{0}^{\frac{\pi}{2}} \] - At \(x = \frac{\pi}{2}\): \[ \frac{\pi}{2} \sin\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \cdot 1 + 0 = \frac{\pi}{2} \] - At \(x = 0\): \[ 0 \cdot \sin(0) + \cos(0) = 0 + 1 = 1 \] 5. **Final Calculation**: \[ \left[ x \sin x + \cos x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 1 \] Thus, the answer for part (i) is: \[ \int_{0}^{\frac{\pi}{2}} x \cos x \, dx = \frac{\pi}{2} - 1 \] --- ### Part (ii): \(\int_{1}^{3} x \log x \, dx\) 1. **Apply Integration by Parts**: Let: - \(u = \log x\) (which gives \(du = \frac{1}{x} \, dx\)) - \(dv = x \, dx\) (which gives \(v = \frac{x^2}{2}\)) 2. **Substitute into the formula**: \[ \int x \log x \, dx = \frac{x^2}{2} \log x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx \] Simplifying the integral: \[ = \frac{x^2}{2} \log x - \frac{1}{2} \int x \, dx \] 3. **Integrate \(x\)**: \[ \int x \, dx = \frac{x^2}{2} \] Therefore, \[ \int x \log x \, dx = \frac{x^2}{2} \log x - \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{2} \log x - \frac{x^2}{4} \] 4. **Evaluate the definite integral from \(1\) to \(3\)**: \[ \left[ \frac{x^2}{2} \log x - \frac{x^2}{4} \right]_{1}^{3} \] - At \(x = 3\): \[ \frac{3^2}{2} \log 3 - \frac{3^2}{4} = \frac{9}{2} \log 3 - \frac{9}{4} \] - At \(x = 1\): \[ \frac{1^2}{2} \log 1 - \frac{1^2}{4} = 0 - \frac{1}{4} = -\frac{1}{4} \] 5. **Final Calculation**: \[ \left[ \frac{x^2}{2} \log x - \frac{x^2}{4} \right]_{1}^{3} = \left( \frac{9}{2} \log 3 - \frac{9}{4} \right) - \left( -\frac{1}{4} \right) \] \[ = \frac{9}{2} \log 3 - \frac{9}{4} + \frac{1}{4} = \frac{9}{2} \log 3 - \frac{8}{4} = \frac{9}{2} \log 3 - 2 \] Thus, the answer for part (ii) is: \[ \int_{1}^{3} x \log x \, dx = \frac{9}{2} \log 3 - 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi) x log sinx dx

int_(0)^(pi//6) cos x cos 3x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sinx cos x dx=?

int_(0)^(pi) x log sinx\ dx

Evaluate the following integrals (i) int_(R)^(oo)(GMm)/(x^(2))dx (ii) int_(r_(1))^(r_(2)) -k(q_1q_2)/(x^(2))dx (iii) int_(u)^(v) Mv dv (iv) int_(0)^(oo) x^(-1//2) dx (v) int_(0)^(pi//2) sinx dx (vi) int_(0)^(pi//2) cosx dx (vii) int_(-pi//2)^(pi//2) cos x dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx