Home
Class 12
MATHS
int(-1)^(2) sqrt(5x+6)dx...

`int_(-1)^(2) sqrt(5x+6)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{-1}^{2} \sqrt{5x+6} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t^2 = 5x + 6 \). This means we can express \( x \) in terms of \( t \): \[ x = \frac{t^2 - 6}{5} \] ### Step 2: Differentiate to find \( dx \) Differentiating both sides with respect to \( t \): \[ dx = \frac{2t}{5} dt \] ### Step 3: Change the limits of integration Now we need to change the limits of integration from \( x \) to \( t \). - For the lower limit when \( x = -1 \): \[ t^2 = 5(-1) + 6 = 1 \implies t = 1 \quad (\text{since } t \geq 0) \] - For the upper limit when \( x = 2 \): \[ t^2 = 5(2) + 6 = 16 \implies t = 4 \quad (\text{since } t \geq 0) \] ### Step 4: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ \int_{-1}^{2} \sqrt{5x + 6} \, dx = \int_{1}^{4} \sqrt{t^2} \cdot \frac{2t}{5} dt \] Since \( \sqrt{t^2} = t \) for \( t \geq 0 \), we have: \[ = \int_{1}^{4} t \cdot \frac{2t}{5} dt = \frac{2}{5} \int_{1}^{4} t^2 \, dt \] ### Step 5: Integrate Now we can integrate \( t^2 \): \[ \int t^2 \, dt = \frac{t^3}{3} \] Thus, \[ \frac{2}{5} \int_{1}^{4} t^2 \, dt = \frac{2}{5} \left[ \frac{t^3}{3} \right]_{1}^{4} \] ### Step 6: Evaluate the definite integral Now we evaluate the limits: \[ = \frac{2}{5} \left( \frac{4^3}{3} - \frac{1^3}{3} \right) = \frac{2}{5} \left( \frac{64}{3} - \frac{1}{3} \right) = \frac{2}{5} \left( \frac{63}{3} \right) = \frac{2 \cdot 63}{15} = \frac{126}{15} = \frac{42}{5} \] ### Final Answer Thus, the value of the definite integral is: \[ \int_{-1}^{2} \sqrt{5x + 6} \, dx = \frac{42}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1-x^(2))sqrt(x)dx

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

Evaluate int_(1)^(5)sqrt(x-2)sqrt(x-1)dx .

Evaluate the following integral: int_(-1)^1 5x^4sqrt(x^5+1)dx\

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: int(x^2)/(sqrt(1-x^6))dx

Evaluate: int(x^2)/(sqrt(1-x^6))dx