Home
Class 12
MATHS
int(0)^(pi//2) sin^(2) x dx...

`int_(0)^(pi//2) sin^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx \), we can follow these steps: ### Step 1: Use the half-angle identity We know that: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] So we can rewrite the integral as: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx \] ### Step 2: Simplify the integral This can be simplified to: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 - \cos(2x)) \, dx \] This can be separated into two integrals: \[ = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{2}} 1 \, dx - \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx \right) \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 4: Evaluate the second integral For the second integral, we need to integrate \( \cos(2x) \): \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] Thus, \[ \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx = \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} (\sin(\pi) - \sin(0)) = \frac{1}{2} (0 - 0) = 0 \] ### Step 5: Combine the results Now substituting back into our expression: \[ \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx \) is: \[ \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin ^(4) x dx

int_(0)^(pi//4) sin ^(2) x dx

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

Prove that int_(0)^(pi/2) sin^(3) x dx=(2)/(3)

Evaluate : int_(0)^(pi//2) sin x dx

If int_(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int_(0)^(pi//2) sin^(n)x" dx" , then lambda=

Evaluate int_0^(pi/2) sin^2x dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then