Home
Class 12
MATHS
int(0)^(pi//6) cos x cos 3x dx...

` int_(0)^(pi//6) cos x cos 3x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{6}} \cos x \cos 3x \, dx \), we can follow these steps: ### Step 1: Use the product-to-sum formula We can use the product-to-sum formula for cosine, which states: \[ 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \] In our case, let \( A = x \) and \( B = 3x \). Thus, \[ \cos x \cos 3x = \frac{1}{2} \left( \cos(4x) + \cos(-2x) \right) \] Since \( \cos(-\theta) = \cos(\theta) \), we have: \[ \cos(-2x) = \cos(2x) \] So we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{6}} \cos x \cos 3x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{6}} \left( \cos(4x) + \cos(2x) \right) dx \] ### Step 2: Split the integral Now we can split the integral: \[ I = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{6}} \cos(4x) \, dx + \int_{0}^{\frac{\pi}{6}} \cos(2x) \, dx \right) \] ### Step 3: Integrate each term Now we will integrate each term separately. 1. **Integrating \( \cos(4x) \)**: \[ \int \cos(4x) \, dx = \frac{1}{4} \sin(4x) \] Therefore, \[ \int_{0}^{\frac{\pi}{6}} \cos(4x) \, dx = \left[ \frac{1}{4} \sin(4x) \right]_{0}^{\frac{\pi}{6}} = \frac{1}{4} \sin\left(4 \cdot \frac{\pi}{6}\right) - \frac{1}{4} \sin(0) = \frac{1}{4} \sin\left(\frac{2\pi}{3}\right) \] 2. **Integrating \( \cos(2x) \)**: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] Therefore, \[ \int_{0}^{\frac{\pi}{6}} \cos(2x) \, dx = \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{6}} = \frac{1}{2} \sin\left(2 \cdot \frac{\pi}{6}\right) - \frac{1}{2} \sin(0) = \frac{1}{2} \sin\left(\frac{\pi}{3}\right) \] ### Step 4: Evaluate the sine values Now we need to evaluate the sine values: - \( \sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \) - \( \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \) ### Step 5: Substitute back into the integral Now substituting back into our integral: \[ I = \frac{1}{2} \left( \frac{1}{4} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \right) \] \[ = \frac{1}{2} \left( \frac{\sqrt{3}}{8} + \frac{\sqrt{3}}{4} \right) = \frac{1}{2} \left( \frac{\sqrt{3}}{8} + \frac{2\sqrt{3}}{8} \right) = \frac{1}{2} \cdot \frac{3\sqrt{3}}{8} = \frac{3\sqrt{3}}{16} \] ### Final Answer Thus, the final answer is: \[ I = \frac{3\sqrt{3}}{16} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) cos 3x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi/2) cos 2x dx

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

int_(0)^(pi//2) x sinx cos x dx=?

int_(0)^(pi//2) x^(2) cos x dx

Integrate the following functions int_(0)^(pi//2) " cos x dx"

int_(0)^(pi//4) cos^(2) x dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

Evaluate: int_(0)^(pi//2) cos2x dx