Home
Class 12
MATHS
int(0)^(pi//2) (a cos^(2) x+b sin^(2) x)...

`int_(0)^(pi//2) (a cos^(2) x+b sin^(2) x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} (a \cos^2 x + b \sin^2 x) \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand using trigonometric identities We know the following identities: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \quad \text{and} \quad \sin^2 x = \frac{1 - \cos 2x}{2} \] Substituting these into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{2}} \left( a \left(\frac{1 + \cos 2x}{2}\right) + b \left(\frac{1 - \cos 2x}{2}\right) \right) \, dx \] ### Step 2: Simplify the integrand Combining the terms inside the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \frac{a + b}{2} + \frac{a - b}{2} \cos 2x \right) \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a + b}{2} \, dx + \int_{0}^{\frac{\pi}{2}} \frac{a - b}{2} \cos 2x \, dx \] ### Step 4: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{2}} \frac{a + b}{2} \, dx = \frac{a + b}{2} \cdot \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{a + b}{2} \cdot \frac{\pi}{2} = \frac{(a + b)\pi}{4} \] ### Step 5: Evaluate the second integral For the second integral, we have: \[ \int_{0}^{\frac{\pi}{2}} \frac{a - b}{2} \cos 2x \, dx \] Using the integral of cosine: \[ \int \cos kx \, dx = \frac{1}{k} \sin kx \] Thus, \[ \int_{0}^{\frac{\pi}{2}} \cos 2x \, dx = \left[ \frac{1}{2} \sin 2x \right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} (\sin \pi - \sin 0) = \frac{1}{2} (0 - 0) = 0 \] ### Step 6: Combine the results Putting it all together, we find: \[ I = \frac{(a + b)\pi}{4} + 0 = \frac{(a + b)\pi}{4} \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} (a \cos^2 x + b \sin^2 x) \, dx = \frac{(a + b)\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi//2) x^(2) cos x dx

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

If int_(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int_(0)^(pi//2) sin^(n)x" dx" , then lambda=

Evaluate : int_0^(pi//2)(a^2cos^2x+b^2sin^2x)dx

Evaluate the following definite integral: int_0^(pi//2)(a^2 cos^2x+b^2sin^2\ \ x)dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

int_(0)^(pi) x sin^(2) x dx

Evaluate: int_0^(pi//2)1/((a^2cos^2x+b^2sin^2x)dx