Home
Class 12
MATHS
int(0)^(1) (1)/(1+x+2x^(2))dx...

`int_(0)^(1) (1)/(1+x+2x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{1}{1 + x + 2x^2} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We start by factoring out a 2 from the denominator: \[ I = \int_{0}^{1} \frac{1}{1 + x + 2x^2} \, dx = \frac{1}{2} \int_{0}^{1} \frac{1}{\frac{1}{2} + \frac{x}{2} + x^2} \, dx \] ### Step 2: Complete the Square Next, we rewrite the quadratic in the denominator by completing the square: \[ \frac{1}{2} + \frac{x}{2} + x^2 = x^2 + \frac{x}{2} + \frac{1}{2} \] To complete the square, we take half of the coefficient of \( x \) (which is \( \frac{1}{2} \)), square it (getting \( \frac{1}{16} \)), and adjust the expression: \[ x^2 + \frac{x}{2} + \frac{1}{2} = \left(x + \frac{1}{4}\right)^2 + \left(\frac{1}{2} - \frac{1}{16}\right) = \left(x + \frac{1}{4}\right)^2 + \frac{7}{16} \] ### Step 3: Substitute and Change Limits Now we substitute \( t = x + \frac{1}{4} \), which gives \( dx = dt \) and changes the limits: - When \( x = 0 \), \( t = \frac{1}{4} \) - When \( x = 1 \), \( t = \frac{5}{4} \) Thus, the integral becomes: \[ I = \frac{1}{2} \int_{\frac{1}{4}}^{\frac{5}{4}} \frac{1}{\left(t\right)^2 + \frac{7}{16}} \, dt \] ### Step 4: Use the Integral Formula We can use the formula for the integral of the form \( \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \). Here, \( a^2 = \frac{7}{16} \) implies \( a = \frac{\sqrt{7}}{4} \): \[ I = \frac{1}{2} \cdot \frac{4}{\sqrt{7}} \left[ \tan^{-1} \left(\frac{t}{\frac{\sqrt{7}}{4}}\right) \right]_{\frac{1}{4}}^{\frac{5}{4}} \] ### Step 5: Evaluate the Limits Now we evaluate the integral at the limits: \[ I = \frac{2}{\sqrt{7}} \left[ \tan^{-1} \left(\frac{5}{\sqrt{7}}\right) - \tan^{-1} \left(\frac{1}{\sqrt{7}}\right) \right] \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{2}{\sqrt{7}} \left[ \tan^{-1} \left(\frac{5}{\sqrt{7}}\right) - \tan^{-1} \left(\frac{1}{\sqrt{7}}\right) \right] \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(x^(2)+x+1)dx

int_(0)^(2) (1)/(4+x+x^(2))dx

int_(0)^(1) (1)/(x^(2) +2x+3)dx

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

int_(0)^(1)(2x)/((1+x^(4)))dx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=