Home
Class 12
MATHS
int(0)^(2) (1)/(4+x+x^(2))dx...

`int_(0)^(2) (1)/(4+x+x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{2} \frac{1}{4 + x + x^2} \, dx \), we will follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator \( 4 + x + x^2 \). We can complete the square for the quadratic expression \( x^2 + x + 4 \). \[ x^2 + x + 4 = \left( x + \frac{1}{2} \right)^2 + \left( 4 - \frac{1}{4} \right) = \left( x + \frac{1}{2} \right)^2 + \frac{15}{4} \] ### Step 2: Substitute in the Integral Now we substitute this back into the integral: \[ I = \int_{0}^{2} \frac{1}{\left( x + \frac{1}{2} \right)^2 + \frac{15}{4}} \, dx \] ### Step 3: Use a Trigonometric Substitution To evaluate this integral, we can use the substitution \( u = x + \frac{1}{2} \), which gives \( du = dx \). The limits change as follows: - When \( x = 0 \), \( u = \frac{1}{2} \) - When \( x = 2 \), \( u = 2 + \frac{1}{2} = \frac{5}{2} \) Thus, we have: \[ I = \int_{\frac{1}{2}}^{\frac{5}{2}} \frac{1}{u^2 + \frac{15}{4}} \, du \] ### Step 4: Factor Out the Constant We can factor out \( \frac{15}{4} \) from the denominator: \[ I = \int_{\frac{1}{2}}^{\frac{5}{2}} \frac{1}{\frac{15}{4} \left( \frac{4u^2}{15} + 1 \right)} \, du = \frac{4}{15} \int_{\frac{1}{2}}^{\frac{5}{2}} \frac{1}{\frac{4u^2}{15} + 1} \, du \] ### Step 5: Use the Arctangent Formula The integral of \( \frac{1}{a^2 + u^2} \) is \( \frac{1}{a} \tan^{-1} \left( \frac{u}{a} \right) \). Here, \( a^2 = 1 \) and \( a = \sqrt{\frac{15}{4}} = \frac{\sqrt{15}}{2} \). Thus, we have: \[ I = \frac{4}{15} \cdot \frac{2}{\sqrt{15}} \left[ \tan^{-1} \left( \frac{u}{\frac{\sqrt{15}}{2}} \right) \right]_{\frac{1}{2}}^{\frac{5}{2}} \] ### Step 6: Evaluate the Limits Now we evaluate the limits: \[ I = \frac{8}{15\sqrt{15}} \left[ \tan^{-1} \left( \frac{5}{\sqrt{15}} \right) - \tan^{-1} \left( \frac{1}{\sqrt{15}} \right) \right] \] ### Step 7: Final Calculation We can simplify the arctangent terms, but the exact values depend on the calculator or tables. Thus, we can leave it in this form or compute the numerical values. ### Final Result The final value of the integral is: \[ I = \frac{8}{15\sqrt{15}} \left[ \tan^{-1} \left( \frac{5}{\sqrt{15}} \right) - \tan^{-1} \left( \frac{1}{\sqrt{15}} \right) \right] \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(1+x+2x^(2))dx

int_(0)^(1) (1)/(x^(2)+x+1)dx

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

int_(0)^(1) (1)/(x^(2) +2x+3)dx

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

int_(0)^(1)(2x)/((1+x^(4)))dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=

int_(0)^(0.2)(1)/((x^(2)+1)^(2))dx