Home
Class 12
MATHS
int(1)^(2) (1)/(x(1+x))dx...

`int_(1)^(2) (1)/(x(1+x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{2} \frac{1}{x(1+x)} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the integrand \( \frac{1}{x(1+x)} \). We can use partial fraction decomposition to rewrite this expression: \[ \frac{1}{x(1+x)} = \frac{A}{x} + \frac{B}{1+x} \] Multiplying through by the denominator \( x(1+x) \) gives: \[ 1 = A(1+x) + Bx \] ### Step 2: Solve for A and B Expanding the right side: \[ 1 = A + Ax + Bx \] This can be rearranged to: \[ 1 = A + (A + B)x \] Now, we can set up a system of equations by equating coefficients: 1. \( A = 1 \) 2. \( A + B = 0 \) From the first equation, we have \( A = 1 \). Substituting \( A \) into the second equation: \[ 1 + B = 0 \implies B = -1 \] Thus, we can rewrite the integrand: \[ \frac{1}{x(1+x)} = \frac{1}{x} - \frac{1}{1+x} \] ### Step 3: Set up the integral Now we can rewrite the integral: \[ \int_{1}^{2} \frac{1}{x(1+x)} \, dx = \int_{1}^{2} \left( \frac{1}{x} - \frac{1}{1+x} \right) \, dx \] ### Step 4: Break the integral into two parts We can now break this into two separate integrals: \[ \int_{1}^{2} \frac{1}{x} \, dx - \int_{1}^{2} \frac{1}{1+x} \, dx \] ### Step 5: Compute the first integral The integral of \( \frac{1}{x} \) is: \[ \int \frac{1}{x} \, dx = \ln |x| + C \] Evaluating from 1 to 2: \[ \left[ \ln x \right]_{1}^{2} = \ln 2 - \ln 1 = \ln 2 \] ### Step 6: Compute the second integral The integral of \( \frac{1}{1+x} \) is: \[ \int \frac{1}{1+x} \, dx = \ln |1+x| + C \] Evaluating from 1 to 2: \[ \left[ \ln(1+x) \right]_{1}^{2} = \ln(3) - \ln(2) \] ### Step 7: Combine the results Now we can combine the results of the two integrals: \[ \int_{1}^{2} \frac{1}{x(1+x)} \, dx = \ln 2 - (\ln 3 - \ln 2) = \ln 2 - \ln 3 + \ln 2 = 2\ln 2 - \ln 3 \] ### Step 8: Use logarithmic properties Using the properties of logarithms, we can simplify: \[ 2\ln 2 - \ln 3 = \ln(2^2) - \ln 3 = \ln \left( \frac{4}{3} \right) \] ### Final Answer Thus, the value of the definite integral is: \[ \int_{1}^{2} \frac{1}{x(1+x)} \, dx = \ln \left( \frac{4}{3} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2) (dx)/(x(1+log x)^(2))

int_(1)^(2) (x^3+1) dx

Evaluate int_(1)^(2)(dx)/(x(1+x^(2)))

Let n in N such that n gt 1 . Statement-1: int_(oo)^(0) (1)/(1+x^(n))dx=int_(0)^(1) (1)/((1-x^(n))^(1//n))dx Statement-2: int_a^b f(x)dx=int_(a)^(b) f(a+b-x)dx

The vaue of int_(-1)^(2) (|x|)/(x)dx is

int_(0)^(1) (1)/(x^(2)+x+1)dx

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

int_(-1)^(2) (x) /((x^(2)+1)^(2))dx

Evaluate int_(1)^(2)(dx)/((x+1)(x+2))

int(x^(2) +1)/((x+1))dx