Home
Class 12
MATHS
int(0)^(pi//2) x^(2) cos x dx...

`int_(0)^(pi//2) x^(2) cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x^2 \) (which we will differentiate) - \( dv = \cos x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now, we find \( du \) and \( v \): - Differentiate \( u \): \[ du = 2x \, dx \] - Integrate \( dv \): \[ v = \int \cos x \, dx = \sin x \] ### Step 3: Apply the Integration by Parts Formula Now we apply the integration by parts formula: \[ I = \left[ x^2 \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \cdot 2x \, dx \] ### Step 4: Evaluate the Boundary Term Evaluate \( \left[ x^2 \sin x \right]_{0}^{\frac{\pi}{2}} \): - At \( x = \frac{\pi}{2} \): \[ \left( \frac{\pi}{2} \right)^2 \sin\left( \frac{\pi}{2} \right) = \frac{\pi^2}{4} \cdot 1 = \frac{\pi^2}{4} \] - At \( x = 0 \): \[ 0^2 \sin(0) = 0 \] Thus, the boundary term is: \[ \left[ x^2 \sin x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi^2}{4} - 0 = \frac{\pi^2}{4} \] ### Step 5: Simplify the Integral Now we need to evaluate: \[ I = \frac{\pi^2}{4} - 2 \int_{0}^{\frac{\pi}{2}} x \sin x \, dx \] ### Step 6: Apply Integration by Parts Again Let’s evaluate \( \int_{0}^{\frac{\pi}{2}} x \sin x \, dx \) using integration by parts again: - Let \( u = x \) and \( dv = \sin x \, dx \) - Then \( du = dx \) and \( v = -\cos x \) Applying integration by parts: \[ \int x \sin x \, dx = \left[ -x \cos x \right]_{0}^{\frac{\pi}{2}} + \int \cos x \, dx \] ### Step 7: Evaluate the New Boundary Term Evaluate \( \left[ -x \cos x \right]_{0}^{\frac{\pi}{2}} \): - At \( x = \frac{\pi}{2} \): \[ -\frac{\pi}{2} \cdot \cos\left( \frac{\pi}{2} \right) = -\frac{\pi}{2} \cdot 0 = 0 \] - At \( x = 0 \): \[ -0 \cdot \cos(0) = 0 \] Thus, the boundary term is: \[ \left[ -x \cos x \right]_{0}^{\frac{\pi}{2}} = 0 - 0 = 0 \] ### Step 8: Complete the Integral Now we have: \[ \int_{0}^{\frac{\pi}{2}} x \sin x \, dx = 0 + \left[ -\cos x \right]_{0}^{\frac{\pi}{2}} = -\left( -1 - 1 \right) = 2 \] ### Step 9: Substitute Back into the Integral Now substituting back: \[ I = \frac{\pi^2}{4} - 2 \cdot 2 = \frac{\pi^2}{4} - 4 \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\pi^2}{4} - 4 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Integrate the following functions int_(0)^(pi//2) " cos x dx"

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sinx cos x dx=?

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate the following : int_(0)^(pi//2) cos^(2) " x dx"

int_(0)^(pi/2) cos^(2) x dx

int_(0)^(pi//6) cos x cos 3x dx

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

(i) int_(0)^(pi//2) x cos x dx (i) int_(1)^(3) x. log x dx

I=int_(0)^( pi/2)x^(2)cos^(2)x*dx