Home
Class 12
MATHS
int(1)^(e) (e^(x) (1+xlog x))/(x) dx...

`int_(1)^(e) (e^(x) (1+xlog x))/(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{e} \frac{e^{x}(1+x\log{x})}{x} \, dx, \] we can start by separating the terms inside the integral: \[ I = \int_{1}^{e} e^{x} \left( \frac{1}{x} + \log{x} \right) \, dx. \] This can be rewritten as: \[ I = \int_{1}^{e} \frac{e^{x}}{x} \, dx + \int_{1}^{e} e^{x} \log{x} \, dx. \] Now we will evaluate each integral separately. ### Step 1: Evaluate \(\int_{1}^{e} \frac{e^{x}}{x} \, dx\) We will use integration by parts for this integral. Let: - \( u = \log{x} \) \(\Rightarrow du = \frac{1}{x} \, dx\) - \( dv = e^{x} \, dx \) \(\Rightarrow v = e^{x}\) Now applying integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int \frac{e^{x}}{x} \, dx = \log{x} \cdot e^{x} - \int e^{x} \cdot \frac{1}{x} \, dx. \] Evaluating from 1 to \(e\): \[ \left[ \log{x} \cdot e^{x} \right]_{1}^{e} - \int_{1}^{e} e^{x} \cdot \frac{1}{x} \, dx. \] ### Step 2: Evaluate \(\int_{1}^{e} e^{x} \log{x} \, dx\) We will again use integration by parts. Let: - \( u = \log{x} \) \(\Rightarrow du = \frac{1}{x} \, dx\) - \( dv = e^{x} \, dx \) \(\Rightarrow v = e^{x}\) So, \[ \int e^{x} \log{x} \, dx = \log{x} \cdot e^{x} - \int e^{x} \cdot \frac{1}{x} \, dx. \] ### Step 3: Combine the results Now we can combine the results from both integrals: \[ I = \left[ e^{x} \log{x} \right]_{1}^{e} + \int_{1}^{e} e^{x} \log{x} \, dx. \] Substituting the limits: \[ I = \left[ e^{e} \cdot 1 - e^{1} \cdot 0 \right] + \int_{1}^{e} e^{x} \log{x} \, dx. \] ### Step 4: Final evaluation Now we can see that both integrals will cancel each other out: \[ I = e^{e} - 0 + 0 = e^{e}. \] So the final answer is: \[ \int_{1}^{e} \frac{e^{x}(1+x\log{x})}{x} \, dx = e^{e}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(2) e^(-x)dx

int_(-1)^(1)e^(2x)dx

int_(0)^(1) x e^(x) dx=1

int (1+log_e x)/x dx

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(-1)^(1) (e^(|x|))/(1+a^(x))dx

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int(1)/(e^(-x)) dx

int(1)/(e^(x)+1)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)