Home
Class 12
MATHS
int(0)^(pi//2) sin^(2) x cos ^(2) x dx...

`int_(0)^(pi//2) sin^(2) x cos ^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let’s denote the integral as \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx \] ### Step 2: Multiply and Divide by 4 We can simplify the integral by multiplying and dividing by 4: \[ I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} 4 \sin^2 x \cos^2 x \, dx \] ### Step 3: Use the Double Angle Identity Using the identity \( 2 \sin x \cos x = \sin 2x \), we have: \[ 4 \sin^2 x \cos^2 x = (2 \sin x \cos x)^2 = \sin^2 2x \] Thus, we can rewrite the integral as: \[ I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^2 2x \, dx \] ### Step 4: Use the Identity for Sine Squared We can use the identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \): \[ \sin^2 2x = \frac{1 - \cos 4x}{2} \] Substituting this into the integral gives: \[ I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 4x}{2} \, dx \] This simplifies to: \[ I = \frac{1}{8} \int_{0}^{\frac{\pi}{2}} (1 - \cos 4x) \, dx \] ### Step 5: Split the Integral Now we can split the integral: \[ I = \frac{1}{8} \left( \int_{0}^{\frac{\pi}{2}} 1 \, dx - \int_{0}^{\frac{\pi}{2}} \cos 4x \, dx \right) \] ### Step 6: Calculate Each Integral 1. The first integral: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] 2. The second integral: \[ \int_{0}^{\frac{\pi}{2}} \cos 4x \, dx = \left[ \frac{\sin 4x}{4} \right]_{0}^{\frac{\pi}{2}} = \frac{\sin 2\pi}{4} - \frac{\sin 0}{4} = 0 \] ### Step 7: Combine the Results Putting it all together: \[ I = \frac{1}{8} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{16} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{16}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin^(2) x dx

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi/2) cos^(2) x dx

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi//2) x sin x cos x dx

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

Evaluate: int _0^((pi)/(2)) (sin ^(2) x .cos ^(2) x )/((sin ^(3) x+ cos ^(3) x)^(2)) dx

Prove that : int_(0)^(pi) sin^(2) x . cos x dx =0

int_(0)^(pi) x sin x cos^(2)x\ dx