Home
Class 12
MATHS
int(0)^(pi//4) cot x. " cosec"^(2) x dx...

`int_(0)^(pi//4) cot x. " cosec"^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \cot x \csc^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( \csc^2 x \) in terms of \( \cot x \): \[ I = \int_{0}^{\frac{\pi}{4}} \cot x \csc^2 x \, dx \] We know that \( \csc^2 x = 1 + \cot^2 x \), but for our purposes, we can keep it as is. ### Step 2: Use Substitution Let \( t = \csc x \). Then, we need to find \( dt \): \[ \frac{dt}{dx} = -\csc x \cot x \implies dt = -\csc x \cot x \, dx \implies dx = -\frac{dt}{\csc x \cot x} \] Thus, we can rewrite the integral: \[ I = \int \cot x \cdot \csc^2 x \cdot \left(-\frac{dt}{\csc x \cot x}\right) \] This simplifies to: \[ I = -\int \csc x \, dt \] ### Step 3: Change the Limits of Integration Now, we need to change the limits of integration according to our substitution: - When \( x = 0 \), \( t = \csc(0) = \infty \) - When \( x = \frac{\pi}{4} \), \( t = \csc\left(\frac{\pi}{4}\right) = \sqrt{2} \) Thus, the integral becomes: \[ I = -\int_{\infty}^{\sqrt{2}} \csc x \, dt \] ### Step 4: Evaluate the Integral Now we can evaluate the integral: \[ I = -\left[ -\frac{1}{2} t^2 \right]_{\infty}^{\sqrt{2}} = \frac{1}{2} \left( \left(\sqrt{2}\right)^2 - \infty^2 \right) \] This simplifies to: \[ I = \frac{1}{2} \left( 2 - \infty \right) = \frac{1}{2} \left( -\infty \right) = -\infty \] ### Final Result Thus, the value of the integral is: \[ I = -\infty \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int " cosec"^(4) 2x dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

int cot^(3) x. cosec^(2) x dx

int_(0)^(pi/4) sin 2x dx

int_(0)^(pi//4) cos^(2) x dx

int " cosec"^(3) " x dx "

int e^(x). "(cot x- cosec"^(2)" x) dx "

If int_(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n) , then m*n is equal to :

Evaluate : int_(0)^(pi//4) tan ^(2) x dx